How Do You Calculate the Probability of a Rat Being in Room 4 After Two Moves?

JeffNYC
Messages
26
Reaction score
0
I've attached the diagram of 4 rooms, which a rat must move through. Each period he changes his room (his state). As you can see if you click on the image, the rat cannot access room 2 from 3, vice versa.

If I assume the rat begins in room 1, how do I calculate the probability he will be in room 4 after his second move? I have the transitional probability matrix correct, I'm just not sure how to move forward.

rat markov chain.GIF


Thank you,

Jeff
 
Physics news on Phys.org
Set up the "transition matrix". According to your picture, if the rat is in room 1, the is a 1/3 chance he will move to each of 2, 3, 4. That means you want your first column to be [0 1/3 1/3 1/3]. That's because you will be multiplying the matrix by a column matrix with entries representing the probability the rat is in room 1, 2, 3, or 4 respectively. If you know for certain the rat is in room 1, then your column matrix is [1 0 0 0] and it is the first column of the matrix that multiplies that first 1.

Similarly, if the rat is in room 2 the probability is 1/2 that it will move to room 1 and 1/2 that it will move to room 4: the second column in your matrix must be [1/2 0 0 1/2].

If the rat is in room 3 the probability is also 1/2 that it will move to room 1 and 1/2 that it will move to room 4 so your third column is the same as the second column.

Finally, if the rat is in room 3, the probability is 1/3 that it will move to room 1, 1/3 that it will move to room 2, and 1/3 that it will move to room 3 so the fourth column is [1/3 1/3 1/3 0].

Your transition matrix is
A= \left[\begin{array}{cccc} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & 0 \frac{1}{2} \\ \frac{1}{2} & 0 & 0 \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\end{array}\right]

Is that what you have?

To find "the probability he will be in room 4 after his second move If the rat begins in room 1" you need to calculate A2 times the column matrix [1 0 0 0].
 
Thanks - that's what I thought, but I wasn't sure about the treatment of the initial probability vector.

Jeff
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top