How Do You Calculate the Sum Involving Series and Normal CDF?

collinback
Messages
2
Reaction score
0
I am trying to calculate the following sum:

vt\Phi(a)+\frac{(vt)^2}{2!}\Phi(\sqrt{2}a)+\frac{(vt)^3}{3!}\Phi(\sqrt{3}a)+\frac{(vt)^4}{4!}\Phi ( \sqrt{4}a)+\ldots

where \Phi is the standard normal CDF. v,t,a are constants.

A relevant formula is e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\ldots. But this cannot be directly applied.

We can also transform \Phi(\sqrt{n}a) from integrals with different upper bounds to integrals with identical upper bound in the following way:
\Phi(\sqrt{n}a)=\int_{-\infty}^{\sqrt{n}a}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx=\int_{-\infty}^{a}\frac{\sqrt{n}} { \sqrt{2\pi}}e^{-\frac{(\sqrt{n}x)^2}{2}}dx

Therefore, the original question is now to calculate
\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{a}[vte^{-\frac{x^2}{2}}+\frac{(vt)^2}{2!}\sqrt{2}e^{-\frac{(\sqrt{2}x)^2}{2}}+\frac{(vt)^3}{3!}\sqrt{3}e^{-\frac{(\sqrt{3}x)^2}{2}}+\frac{(vt)^4}{4!}\sqrt{4}e^{-\frac{(\sqrt{4}x)^2}{2}}+\ldots]dx

But still, I don't know how to calculate the sum in the brackets.

Please let me know if you have any progress or if you spot any error in the above transformation.
 
Last edited:
Physics news on Phys.org
collinback said:
I am trying to calculate the following sum:\Phi

vt\Phi (a) + \frac{2}{2!} \Phi(\sqrt{2}a) + \frac{(vt)<sup>3</sup>}{3!} ]\Phi(\sqrt{3}a)+\frac{(vt)<sup>4</sup>}{4!}]\Phi[/itex](\sqrt{4}a)+\ldots

Of course an relevant formula is that ex=1+x+\frac{(x)<sup>2</sup>}{2!}+\frac{(x)<sup>3</sup>}{3!}+\frac{(x)<sup>4</sup>}{4!}+\ldots. But this cannot be directly applied.



Very hard to understand what you wrote as you didn't introduce the ... symbols correctly. Try again and check (with "preview post") before you send your post.

DonAntonio
 
Back
Top