sdg612
- 5
- 0
Find the Taylor polynomial of degree 10 about x=0 for f(x)=sin2x (show all work)
This is what i have:
M10= f(0)+f\hat{}1(0)x+f\hat{}2(0)x\hat{}2/2!+f\hat{}3(0)x\hat{}3/3!+...+f\hat{}10(0)x\hat{}10/10!
f(x)=sin2x
f(0)=sin2(0)=0
f\hat{}1(x)=2cos2x
f\hat{}1(0)=2cos2(0)=2
f\hat{}2(x)=-4sin2x
f\hat{}2(0)=-4sin2(0)=0
f\hat{}3(x)=-8cos2x
f\hat{}3(0)=-8cos2(0)=-8
f\hat{}4(x)=16sin2x
f\hat{}4(0)=16sin2(0)=0
f\hat{}5(x)=32cos2x
f\hat{}5(0)=32cos2(0)=32
f\hat{}6(x)=64sin2x
f\hat{}6(0)=64sin2(0)=0
f\hat{}7(x)=128cos2x
f\hat{}7(0)=128cos2(0)=128
f\hat{}8(x)=256sin2x
f\hat{}8(0)=256sin2(0)=0
f\hat{}9(x)=412cos2x
f\hat{}9(0)=412cos2(0)=412
f\hat{}10(x)=824sin2x
f\hat{}10(0)=824sin2(0)=0
So, M10=0+2x+0-8x\hat{}3/3!+0+32x\hat{}5/5!+0+128x\hat{}7/7!+0+412x\hat{}9/9!+0
Therefore, 2x-8x\hat{}3/3!+32x\hat{}5/5!+128x\hat{}7/7!+412x\hat{}9/9!
This is what i have:
M10= f(0)+f\hat{}1(0)x+f\hat{}2(0)x\hat{}2/2!+f\hat{}3(0)x\hat{}3/3!+...+f\hat{}10(0)x\hat{}10/10!
f(x)=sin2x
f(0)=sin2(0)=0
f\hat{}1(x)=2cos2x
f\hat{}1(0)=2cos2(0)=2
f\hat{}2(x)=-4sin2x
f\hat{}2(0)=-4sin2(0)=0
f\hat{}3(x)=-8cos2x
f\hat{}3(0)=-8cos2(0)=-8
f\hat{}4(x)=16sin2x
f\hat{}4(0)=16sin2(0)=0
f\hat{}5(x)=32cos2x
f\hat{}5(0)=32cos2(0)=32
f\hat{}6(x)=64sin2x
f\hat{}6(0)=64sin2(0)=0
f\hat{}7(x)=128cos2x
f\hat{}7(0)=128cos2(0)=128
f\hat{}8(x)=256sin2x
f\hat{}8(0)=256sin2(0)=0
f\hat{}9(x)=412cos2x
f\hat{}9(0)=412cos2(0)=412
f\hat{}10(x)=824sin2x
f\hat{}10(0)=824sin2(0)=0
So, M10=0+2x+0-8x\hat{}3/3!+0+32x\hat{}5/5!+0+128x\hat{}7/7!+0+412x\hat{}9/9!+0
Therefore, 2x-8x\hat{}3/3!+32x\hat{}5/5!+128x\hat{}7/7!+412x\hat{}9/9!