How Do You Convolve Two Monomials with Non-Integer Powers?

  • Thread starter Thread starter Char. Limit
  • Start date Start date
  • Tags Tags
    Convolution
Char. Limit
Gold Member
Messages
1,222
Reaction score
23
So I wanted to find the convolution of two monomials (don't ask me why) in the most general way I knew how. Of course, I only knew how for positive integer powers, but maybe someone can tell me how to do it for positive real powers (Gamma function maybe?). Anyway, here's what I did, replacing tau with s to make it easier to write:

t^a \star t^b = \int_0^t s^a \left(t-s\right)^b ds

= \int_0^t s^a \left(t^b + \left(\left(-1\right)^1 b\right) s t^{b-1} + \frac{\left(-1\right)^2 b \left(b-1\right)}{2} s^2 t^{b-2} + ... + \frac{\left(-1\right)^{b-2} b \left(b-1\right)}{2} s^{b-2} t^2 + \left(\left(-1\right)^{b-1} b\right) t s^{b-1} + \left(-1\right)^b s^b\right) ds

= \int_0^t t^b s^a + \left(\left(-1\right)^1 b\right) t^{b-1} s^{a+1} + \frac{\left(-1\right)^2 b \left(b-1\right)}{2} t^{b-2} s^{a+2} + ... + \frac{\left(-1\right)^{b-2} b \left(b-1\right)}{2} t^2 s^{a+b-2} + \left(\left(-1\right)^{b-1} b\right) t s^{a+b-1} + \left(-1\right)^b s^{a+b} ds

= \frac{t^b s^{a+1}}{a+1} + \frac{\left(-1\right)^1 b t^{b-1} s^{a+2}}{a+2} + \frac{\left(-1\right)^2 b \left(b-1\right) t^{b-2} s^{a+3}}{2\left(a+3\right)} + ... + \frac{\left(-1\right)^{b-2} b \left(b-1\right) t^2 s^{a+b-1}}{2\left(a+b-1\right)} + \frac{\left(-1\right)^{b-1} b t s^{a+b}}{a+b} + \frac{\left(-1\right)^b s^{a+b+1}}{a+b+1} |_0^t

=\frac{t^{a+b+1}}{a+1} + \frac{\left(-1\right)^1 b t^{a+b+1}}{a+2} + \frac{\left(-1\right)^2 b \left(b-1\right) t^{a+b+1}}{2\left(a+3\right)} + ... + \frac{\left(-1\right)^{b-2} b \left(b-1\right)} t^{a+b+1}}{2\left(a+b+1\right)} + \frac{\left(-1\right)^{b-1} b t^{a+b+1}}{a+b} + \frac{\left(-1\right)^b t^{a+b+1}}{a+b+1}

= t^{a+b+1} \left(\frac{\left(-1\right)^0 b!}{\left(a+1\right) 0! \left(b-0\right)!} + \frac{\left(-1\right)^1 b!}{\left(a+2\right) 1! \left(b-1\right)!} + \frac{\left(-1\right)^2 b!}{\left(a+3\right) 2! \left(b-2\right)!} + ... + \frac{\left(-1\right)^{b-2} b!}{\left(a+b-1\right) \left(b-2\right)! 2!} + \frac{\left(-1\right)^{b-1} b!}{\left(a+b\right) \left(b-1\right)! 1!} + \frac{\left(-1\right)^b b!}{\left(a+b+1\right) \left(b-0\right)! 0!} \right)

t^a \star t^b = t^{a+b+1} \sum_{n=0}^b \frac{\left(-1\right)^n b!}{\left(a+n+1\right) n! \left(b-n\right)!}

Does this seem right? And is it possible to generalize this to powers other than positive integers?
 
Last edited:
  • Like
Likes ZubinM
Mathematics news on Phys.org
Bumping, it's been two or three days.

I do want to know one thing: the formula I have only holds for positive integer b. Assuming everything I did holds to be true, can I simply change the factorials to gamma functions (changing the b to b-1 of course) and continue from there?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top