How Do You Find the Energies and Wavefunctions for a Particle on a Sphere?

  • Thread starter Thread starter land
  • Start date Start date
  • Tags Tags
    Spherical
land
Messages
31
Reaction score
0
OK, I have that a particle of mass m is moving on the surface of a sphere of radius R but is otherwise free. The Hamiltonian is H = L^2/(2mR^2). All I have to do is find the energies and wavefunctions of the stationary states...

this seems like it should be really easy, but I am struggling mightily for some reason. To be honest I don't even know how to get started.. I know eigenfunctions of Lz are also eigenfunctions of L^2. I know L^2 operating on Y^m_l is \hbar^2l(l+1)Y^m_l. I know once I get one stationary state I should be able to get the rest by operating the raising and lowering operators on it. But I just don't know how to get there. :(

Thanks as always for the help.
 
Physics news on Phys.org
Anybody have a clue how to go about this? I feel like I should be able to do this but I just can't. I've looked at it for hours and don't know how to begin.. nothing I've tried works. sigh. thanks for the help :)
 
Anybody? This should be a straightforward problem, which is what makes it so frustrating :(
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top