How do you integrate \(\int \sec^{2n+1} x \, dx\)?

Click For Summary
The discussion focuses on solving the integral \(\intop_{-\pi/2}^{+\pi/2}\sqrt{(-6\sin 2t)^2+\sqrt{6}(\cos t)^2}dt\). Participants suggest using substitution methods, such as \(u = \sin t\) or \(z = \tan w/\sqrt{6}\), and emphasize the need to adjust the limits of integration accordingly. The conversation reveals challenges with integrating the resulting expressions, particularly when hyperbolic functions are introduced. Ultimately, the integral simplifies to a standard form, leading to a discussion about integrating \(\sqrt{1+x^2}\) and the potential use of hyperbolic identities. The thread concludes with a summary of methods to approach the integral, highlighting the importance of substitution and integration techniques.
  • #31
ok but i get the same integral s before
 
Physics news on Phys.org
  • #32
Like I said, I can't think of any other way of doing it other than the way I have mentioned. Perhaps your lecturer can.
 
  • #33
Integrating I_n = \int \sec^{2n+1} x dx:

1. Integrate by parts to get a recurrence relation.
With u=\sec^{2n-1} x , du = (2n-1) \sec^{2n-2} x \cdot \sec x \tan x dx and dv = \sec^2 x dx, v= \tan x we have
I_n = \int \sec^{2n+1} x dx = \sec^{2n-1} x \tan x - \int (2n-1) \sec^{2n-1}\cdot \tan^2 dx
= \sec^{2n-1} x \tan x - (2n-1) \biggl( \int sec^{2n+1}x dx- \int \sec^{2n-1}x dx \biggr)
= \sec^{2n-1} x \tan x -(2n-1)\left( I_n - I_{n-1} \right)
I_n = \frac{\sec^{2n-1} x \tan x +(2n-1)I_{n-1}}{2n}

This eventually reduces the problem down into I_1 = \int \sec x dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} dx = \log |\sec x + \tan x| + C

2. Make a substitution, then integrate a rational function.
I_n = \int \frac{\cos x}{\cos^{2n+2} x}{dx} = \int \frac{ d(\sin x) }{(1-\sin^2 x)^{n+1} } = \int \frac{1}{(1-u^2)^{n+1}} du
Now it is a simple but tedious exercise in partial fractions.

3. Let x= \sin^{-1}\left(\tanh t\right), then
I_n = \int \cosh^{2n} t dt

\cosh^{2n} x= \left( \frac{e^x + e^{-x} }{2} \right)^{2n}
= \frac{1}{2^{2n}}\left( \binom{n}{0} e^{2nx} + \binom{n}{1} e^{2(n-1)x} + \binom{n}{2} e^{2(n-2)x} + \cdots + \binom{n}{n-2} e^{-2(n-2)x} + \binom{n}{n-1} e^{-2(n-1)x} + \binom{n}{n} e^{-2nx} \right)
= \frac{1}{2^{2n-1}} \left( \binom{n}{0} \cosh (2nx) + \binom{n}{1} \cosh (2(n-1)x) + \binom{n}{2} \cosh ( 2(n-2)x ) + \cdots

So integrating term by term:
I_n = \frac{1}{2^{2n}} \left( \binom{n}{0} \frac{\sinh (2nt)}{n} + \binom{n}{1} \frac{\sinh (2(n-1)t) }{n-1} + \binom{n}{2} \frac{ \sinh (2(n-2)t)}{n-2} + \cdots + C
where t= \tanh^{-1} \left(\sin x\right).
 

Similar threads

Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 44 ·
2
Replies
44
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K