How Do You Normalize a Quantum Wavefunction in One Dimension?

  • Thread starter Thread starter czaroffishies
  • Start date Start date
  • Tags Tags
    Wavefunction
czaroffishies
Messages
14
Reaction score
0
I am very sorry that I did not use latex here. It didn't seem to be functioning properly, but I tried to make this readable.

Homework Statement



The wave function for a particle moving in one dimension is

Psi(x, t) = A x e^[-(sqrt(km)/2(hbar))*x^2] e^[-i*sqrt(k/m)*(3/2)*t]

Normalize this wave function.

Homework Equations



Psi(x,t)^2 = probability that particle is found at point x.
So, total probability of particle being found anywhere is integral from -inf to +inf of Psi*(x, t)*Psi(x,t) dx, where Psi*(x, t) is the complex conjugate of Psi(x, t), and must be equal to 1.

The Attempt at a Solution



First multiplied Psi(x, t) by complex conjugate:

Psi*(x, t) * Psi(x, t) =

(A x e^[-(sqrt(km)/2(hbar))*x^2] e^[i*sqrt(k/m)*(3/2)*t]) times
(A x e^[-(sqrt(km)/2(hbar))*x^2] e^[-i*sqrt(k/m)*(3/2)*t])

= A^2 x^2 e^2*[-(sqrt(km)/2(hbar))*x^2]

= A^2 x^2 e^[-(sqrt(km)/(hbar))*x^2]

This is somewhat embarrassing, but I am not sure I know how to integrate this. And if it can't be integrated by normal means, it probably wouldn't show up as the first problem in an introductory quantum mechanics book.

I'm not seeing where I went wrong... any help is appreciated!
 
Physics news on Phys.org
It's a standard gaussian integral.
 
Sweet, thanks.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top