How Do You Prove f^(2n)(0)=(2n)!/(n!) for f(x)=e^(x^2)?

  • Thread starter Thread starter leftwing1018
  • Start date Start date
leftwing1018
Messages
1
Reaction score
0
Here's the problem:

If f(x)=e^(x^2), show that f^(2n)(0)=(2n)!/(n!).

Really I don't even know where to begin. Any help on where to start would be great.
 
Physics news on Phys.org
Hi leftwing1018,

Welcome to PF. Here's a hint: write f(x) as an infinite series using the well-known series expansion of ex, and then compare that with the Taylor expansion of a general function near x = 0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top