Emanuel84
- 13
- 0
Hi, I'm wondering how to prove the following...can you help me?
<br /> F^{\mu \rho} G_{\rho \nu} = \eta^\mu_{\phantom{\mu}\nu} \mathbf{E} \cdot \mathbf{B}<br /><br /> F^{\mu \nu} F_{\mu \nu} = -2\left(\mathbf{E}^2-\mathbf{B}^2\right)<br /><br /> G^{\mu \nu} F_{\mu \nu} = -4\,\mathbf{E} \cdot \mathbf{B}<br /><br /> G^{\mu \nu} G_{\mu \nu} = F^{\mu \nu} F_{\mu \nu}<br />
F is the electromagnetic tensor, G is it's dual, \eta is the metric tensor, \mathbf{E} and \mathbf{B} the electric and magnetic field respectively.Thank you for your patience!

<br /> F^{\mu \rho} G_{\rho \nu} = \eta^\mu_{\phantom{\mu}\nu} \mathbf{E} \cdot \mathbf{B}<br /><br /> F^{\mu \nu} F_{\mu \nu} = -2\left(\mathbf{E}^2-\mathbf{B}^2\right)<br /><br /> G^{\mu \nu} F_{\mu \nu} = -4\,\mathbf{E} \cdot \mathbf{B}<br /><br /> G^{\mu \nu} G_{\mu \nu} = F^{\mu \nu} F_{\mu \nu}<br />
F is the electromagnetic tensor, G is it's dual, \eta is the metric tensor, \mathbf{E} and \mathbf{B} the electric and magnetic field respectively.Thank you for your patience!

Last edited: