QuarkCharmer
- 1,049
- 3
Homework Statement
\lim_{t\to0}\frac{1}{t}-\frac{1}{t^2+t}
Homework Equations
Limit Laws, et al.
The Attempt at a Solution
\lim_{t\to0}\frac{1}{t}-\frac{1}{t^2+t}
I didn't feel this would work, too much division by zero, so I found a common den.
\lim_{t\to0}\frac{t^2+t}{t(t^2+t)}-\frac{t}{t(t^2+t)}
\lim_{t\to0}\frac{t^2+t-t}{t(t^2+t)}
\lim_{t\to0}\frac{t^2}{t^3+t^2)}
\lim_{t\to0}\frac{t^2}{t^2(t+1)}
\lim_{t\to0}\frac{1}{t+1} = \frac{1}{1}
Edit:
I figured it out now, does it appear correct?