How do you solve 5x + 9y = 181?

  • Thread starter Thread starter David Carroll
  • Start date Start date
AI Thread Summary
To solve the equation 5x + 9y = 181 for positive integers x and y, one can utilize the properties of Diophantine equations. The solutions for y form an arithmetic progression, specifically integers that differ from 9 by multiples of 5, yielding values like 4, 9, 14, and 19. For x, the values are determined by being congruent to 2 modulo 9, resulting in a sequence starting from 2. The general solutions can be expressed as x = 362 - 9k and y = -181 + 5k, where k is an integer that must be constrained to keep both x and y positive. This method provides a systematic approach rather than relying solely on trial and error.
David Carroll
Messages
181
Reaction score
13
Sorry for the misleading title. My question is: how do you solve Xa + Yb = Z, where X, Y, and Z are positive integer constants and a and b are positive integer variables?

For example, consider 5x + 9y = 181. The problem is: solve for all possible answers for x and y, where x and y are both positive integers. Is it just trial and error or is there some equation that would lead me directly to all the solutions?
 
Mathematics news on Phys.org
David Carroll said:
Sorry for the misleading title. My question is: how do you solve Xa + Yb = Z, where X, Y, and Z are positive integer constants and a and b are positive integer variables?

For example, consider 5x + 9y = 181. The problem is: solve for all possible answers for x and y, where x and y are both positive integers. Is it just trial and error or is there some equation that would lead me directly to all the solutions?
Look up Diophantine equation (http://en.wikipedia.org/wiki/Diophantine_equation) and the Chinese remainder theorem.
 
hddd123456789 said:
you can choose any b and get a corresponding a.

Not if a and b are both required to be integers.
 
I noticed in the particular example I proposed that the solutions to y are those integers that differ from 9 by a multiple of 5 (or zero). Thus, the solutions to y are 4, 9, 14, and 19 which is an arithmetic progression modulo 5. As far as x goes, it seems a little more tricky: x differs from 5 by integers that are multiples of 3, which is a divisor of 9. 9 seems to be the limiting agent here.
 
Oh, duh...all the x's are in an arithmetic progression congruent 2 modulo 9: 2, 11, 20, 29. Why it starts at 2 is a little perplexing.
 
As an example, for the equation 5x+ 9y= 181, 5 divides into 9 once with remainder 4: 9- 5= 4. 4 divides into 5 once with remainder 1: 5- 4= 1. Replacing the "4" in that last equation with 9- 5, 5- (9- 5)= 5(2)+ 9(-1)= 1. Multiply both sides of the equation by 181: 5(362)+ 9(-181)= 181. Thus x= 362, y= -181 is a solution. But it is easy to see that x= 362- 9k, y= -181+ 5k is also a solution for any integer k: 5(362- 9k)+ 9(-181+ 5k)= 5(362)- 45k- 9(181)+ 45k= 5(362)- 9(181)= 181.

In particular, if x and y are required to be positive, we must have -181+ 5k> 0 so 5k> 181, k> 36; as well as 362- 9k> 0 so 9k< 362, k< 41. Taking k= 37 gives x= 362- 9(37)= 29, y= -181+ 5(37)= 4. Taking k= 38, x= 362- 9(38)= 20, y= -181+ 5(38)= 9. Taking k= 39, x= 362- 9(39)= 11, y= -181+ 5(39)= 14. Taking k= 40, x= 362- 9(40)= 2, y= -181+ 5(40)= 19. Values of k less than 37 make y negative, values of k larger than 40 make x negative.
 
  • Like
Likes David Carroll
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
5
Views
1K
Replies
4
Views
1K
Replies
10
Views
2K
Replies
5
Views
2K
Replies
2
Views
1K
Replies
5
Views
3K
Back
Top