How Do You Solve an Euler-Cauchy Equation Like x^2y'' + xy' - y = 1/x?

engineer_dave
Messages
35
Reaction score
0

Homework Statement



Find the general solution of x^2y" + xy' - y = 1/x


Homework Equations



m(m-1) +am + b = 0 to solve an Euler Cauchy equation

The Attempt at a Solution



a=1 b=-1

m(m-1) -m -1 =0

m^2 - 2m -1 = 0

I just want to know whether the first step is right. And once I find out the values of M, do I use variation of parameters to find the particular solution? Thanks
 
Physics news on Phys.org
engineer_dave said:

Homework Statement



Find the general solution of x^2y" + xy' - y = 1/x


Homework Equations



m(m-1) +am + b = 0 to solve an Euler Cauchy equation

The Attempt at a Solution



a=1 b=-1

m(m-1) -m -1 =0

m^2 - 2m -1 = 0

I just want to know whether the first step is right. And once I find out the values of M, do I use variation of parameters to find the particular solution? Thanks
One obvious error: a= +1 here , not -1. Yes, you can use "variation of parameters". Also, because the right hand side is a power of x, you could use "undertermined coefficients" although it is slightly harder to "guess" the correct form for a particular solution in such an equation as compared to a "constant coefficients" equation. Finally, the change of variable u= ln(x) will convert this equation to a "constant coefficients" equation.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top