How Do You Solve This First Degree ODE Involving Hyperbolic Functions?

  • Thread starter Thread starter bigevil
  • Start date Start date
  • Tags Tags
    Degree Ode
bigevil
Messages
77
Reaction score
0

Homework Statement



\frac{dy}{dx} = \frac{cosh x cos y + cosh y sin x}{sinh x sin y - sinh y sin x}

I'm really stuck at this one. I don't even know where to start, but I hope that a substitution (ie u = f(x,y)) might be able to put this in a separable form. Any hints please??

Other roads:

1. Hyperbolic cosine/sine identities?

2. Expressing as powers of e?
 
Physics news on Phys.org
Is there a typo? It's almost exact. The sin x in the numerator looks out of place.
 
This is an exact equation.

dy/dx = Numerator/Denominater

D dx - N dy =0

\partialD/\partialy=\partialN/\partialx

u (nearly)=D dx + N dy
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top