How does angular momentum create a perpendicular force?

Click For Summary
Angular momentum in a spinning wheel creates a perpendicular force through the phenomenon of precession, which occurs when an external torque is applied. The wheel's linear momentum is balanced, preventing individual atoms from falling due to the collective behavior of the wheel's structure. As the wheel precesses, the change in velocity components lags behind the applied torque by about 90 degrees. This precession counteracts the torque from gravity and the supporting line, maintaining the wheel's stability. Ultimately, the vertical tension in the supporting line opposes gravity, allowing the wheel to remain upright.
chi-young
Messages
9
Reaction score
0
The experiment of a quickly rolling wheel on a string is well known.



How is this behavior explained in terms of the molecules of an atom? That is to say, why don't the individual atoms of the wheel fall down?
 
Last edited by a moderator:
Physics news on Phys.org
It is because the atoms are mouseketeers and they took an all for one. and one for all vow to get into to wheel fraternity. Actually the spinning parts of the wheel only have linear momentum, linear momentum at the bottom half is canceled by linear momentum in the top half. The string on the axel of the wheel ties the wheel to a fixed point, if the wheel was to rotate down that would change the linear momentum, but since the linear momentum is conserved, it causes the torques that the professor explained better than I can.
 
One way to look at the situation is to note that velocity change is the result of an acceleration applied over some period of time. In the case of a wheel in a precessing mode due to wheel rotation and external torque, the velocity change component perpendicular to the plane of rotation of a point on the wheel lags the change in acceleration component perpendicular to the plane of rotation by about 90° as the wheel rotates and precesses.

The end result is that the reaction of a spinning wheel to an external torque will be a precession about 90° "after" the torque. This effect applies to a single rotor helicopter, so the "cylic", which controls roll and pitch rotation, is advanced by 90° from the pilot input to compensate, and the helicopers roll and pitch responses are precession like reactions to torque inputs from the rotor blades.

The reason while the wheel doesn't fall down is that the torque due to gravity and the line holding the wheel up is opposed by an equal and opposing torque if the wheel is precessing at a constant and "proper" rate. The other situation is that the free axis end of the wheel will oscillate up and down as the rate of precession increases and decreases.

The other interesting bit here is that the center of mass of the wheel will tend to stay on the same horizontal plane moving the free axis up or down depending on the movement of the supporting line and how far off from vertical the supporting line is at any moment (the ideal situaion would be a massless supporting line). Look at video #9 on this web page for an example of this:

http://www.gyroscopes.org/1974lecture.asp

Video #18 on that same web page has small masses located at the ends of the spokes that demonstrate the explanation I gave above, but in the video the effect is noted but not explained.

how does angular momentum create a perpendicular force?
It doesn't create a force, the precession creates a torque that opposes the torque due to the supporting line and gravitly, so that the wheel doesn't rotate "downwards", and the vertical component of tension in the line is what opposes gravity.
 
Last edited:
This might help:

https://www.youtube.com/watch?v=TUgwaKebHTs
 
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

Replies
4
Views
2K
Replies
2
Views
3K
Replies
9
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 60 ·
3
Replies
60
Views
5K
Replies
36
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K