How Does Diffusion Affect Electron Density in a Solar Cell?

Otterhoofd
Messages
8
Reaction score
0

Homework Statement


You have a solar cell with a constant electron density n, and known dimensions. I am looking for the change in density due to diffusion, so basically the diffusion current. All other relevant parameters are also known (temperature, D diffusion constant, etc.)

To summarize the problem: I have a cube with electron density n, outside electron density 0. Question: what is \frac{dn}{dt} due to diffusion?

Homework Equations


Fick's Law: J = - D \times \frac{dn}{dx}
Or root mean square distance traveled by brownian motion:
\Delta x_{rms} = \sqrt{2\times D \times t}

The Attempt at a Solution


Using Fick's law, you get a infinite current since there is a concentration step from n inside to 0 outside the device. However, i think that Ficks law does not hold for this steep concentration gradients. Maybe one could solve this using equipartition of energy? But then again, the exercise hints at the use of the diffusion parameter and says the question should be simple to answer.

Any help would be greatly appreciated. Thank you.
 
Physics news on Phys.org
Hint: There's a more useful equation than Fick's first law.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top