How does electric current flow through a conductor

Click For Summary
Electric current flows through a conductor primarily due to the movement of free electrons, which do not displace the atoms but rather cause them to vibrate in place. The stability of atoms is maintained by the attractive forces between electrons and the nucleus, even when electrons move. In conductors, electrons can flow freely without causing structural instability, as they are part of a delocalized "ocean" of electrons. In gases, current can only flow if the gas is ionized into plasma or if electrons gain enough energy to overcome the cathode's work function. Understanding these principles is essential for grasping the behavior of electric current in various materials.
  • #61
AlphaLearner said:
Summarizing what I actually meant to say in #57 since what I wanted to express is not clear:

Till what extent that electrons are still free to flow at 0K? No matter whether it is practical to create such a condition or not... Atleast in theory, is it possible?
I thought I already answered this (post 58).
But you don't have to take my word, just read some of the books.
Or maybe start with some quantum mechanics. The behavior of electrons in metals is not described by classical mechanics at all (the classical predictions are order of magnitude off). See Drude model versus Sommerfeld model.
The distance between atoms in the lattice is not really relevant for the mean free path of electrons. Actualy the mean free path increases dramatically at low temperatures. It can reach millimeters or even centimeters for very pure samples. This behavior cannot be understood in terms of classical collisions between electrons and atoms in the lattice.
 
Last edited:
  • Like
Likes AlphaLearner
Physics news on Phys.org
  • #62
nasu said:
Or maybe start with some quantum mechanics. The behavior of electrons in metals is not described by classical mechanics at all (the classical predictions are order of magnitude off). See Drude model versus Sommerfeld model.
The distance between atoms in the lattice is not really relevant for the mean free path of electrons. Actualy the mean free path increases dramatically at low temperatures. It can reach millimeters or even centimeters for very pure samples. This behavior cannot be understood in terms of classical collisions between electrons and atoms in the lattice.
Thank's for your reply, I didnt notice your post yet it maybe marked away from green.
 
  • #63
AlphaLearner said:
Summarizing what I actually meant to say in #57 since what I wanted to express is not clear:

Now after reading what I wrote carefully, I thought of expressing contraction of metals will lessen the space, make structure more condensed, making free electrons trapped in latice causing problems for free electrons to flow, then I wanted to state that even since electrons lose energy from their ultimate energy level required for them to be free from that atom, electrons get closer to nucleus and due to nuclear charge on electrons, they show resistance to move from atom and went on... Finally wanted to say that there can't be 'Free electrons' to flow at 0K making conductivity of a materal almost negligible considering those above 2 main points. My main intention is to oppose that there can be 'Free electrons' at 0K in a conductor. Till what extent that electrons are still free to flow at 0K? No matter whether it is practical to create such a condition or not... Atleast in theory, is it possible?

Even at zero kelvin there are still huge numbers of electrons in the conduction band of a metallic conductor (not in semiconductors though). Current actually flows better at extremely low temperatures in a metallic conductor than it does at room temperature, as nasu said in post #58. In fact, at temperatures near 0 K metals often become superconductive. Electrons are never trapped between ions in the lattice. They just don't work that way.

I'd also like to reiterate that you cannot think of conduction in terms of classical particles. Electrons are not hard, spherical balls that move through a material in set paths and bounce off of things like pinballs in a pinball machine. They are quantum particles that behave in non-intuitive ways.
 
  • Like
Likes sophiecentaur

Similar threads

Replies
16
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
1
Views
1K
  • · Replies 25 ·
Replies
25
Views
4K