How Does Friction Affect the Speed of a Bowling Ball When It Starts Rolling?

AI Thread Summary
Friction plays a crucial role in the transition of a bowling ball from sliding to rolling, affecting its final speed. When a bowling ball is thrown with an initial speed v(0), it eventually rolls without slipping at a speed of 5/7*v(0) due to the work done by friction. The discussion highlights the complexity of calculating the work done by friction, emphasizing that the torque from the ball must equal the work done, which is not straightforward. The participants express confusion over the correct distance (D) to use in their energy equations, noting that traditional methods yield inconsistent results. Ultimately, the conversation underscores the nuanced relationship between torque, work, and the rolling motion of the bowling ball.
Tamishu
Messages
1
Reaction score
0

Homework Statement


One version: A bowling ball is thrown down the alley with speed v(0). Initially, it slides without rolling, but due to friction, it begins to roll. Show that it's speed when it rolls without sliding is 5/7*v(0) .
Another version: Given a bowling ball thrown down the lane with speed v(0) , find the speed v(f) in terms of v(0) at which the ball rolls without slipping.

Homework Equations


KE = 1/2*m*v^2
F = ma
v(f)^2 = v(0)^2 + 2ax
T = Ia
etc..

The Attempt at a Solution


My second idea was that the torque of the ball must equal the work due to friction. Following this line worked out, and I got that the final speed is 5/7 of the initial speed. Cool beans.
My first idea was to use conservation of energy. So...

1/2 * m * v(0)^2 = 1/2 *m * v(f)^2 + 1/2 * I * omega(f)^2 + F(fr) * D

Except... what is D? According to various methods I tried, it's NOT R*theta, or the x in the third equation, or even R*theta - x. I say it's not because I didn't get 5/7 for the answer. (I would admit to doing math wrong, except I sat down with my professor and watched him do it and get the same wrong answers that I did. So, either we both suck at math, or the answers were "right".)
Knowing what v-final is *supposed* to be, I went back and substituted it into my energy equation. I also substituted in F(fr)= ma = m * ((v(f)^2 - v(0)^2) / 2d )
I ultimately got D being 7/12 * d, d = distance the ball is translated.
(I assume this value will work if I plug it into my energy equation and try solving for v(f), but I did NOT double check.)

So, if my value for D is correct... what does it mean? It seems like a rather random number.
Or even if my value for D isn't correct... what am I supposed to use? And how am I supposed to find it?
 
Physics news on Phys.org
First, semantics: "torque" can never equal "work".

Second, the work done by friction is NOT equal to F*D, or even \int F(x) dx. The reason is that the point at which the frictional force acts (the bottom of the bowling ball) is moving at a different velocity than the center-of-mass of the ball. The work friction does per unit time is \vec{F}\cdot\vec{v} where \vec{v} is the velocity of the bottom of the ball. For instance, when the ball is rolling without slipping, friction does zero work (even though the frictional force is not zero)!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top