How Does Kinetic Friction Affect a Bowling Ball's Motion?

AI Thread Summary
Kinetic friction significantly influences a bowling ball's motion by causing both linear and angular accelerations. The initial linear speed of the ball is 8.5 m/s, and it experiences a linear acceleration of -2.66 m/s² due to the coefficient of kinetic friction, which is 0.21. The angular acceleration is calculated to be 46.82 rad/s², derived from the torque produced by the frictional force. As the ball slides, it will eventually transition to smooth rolling when the linear and angular speeds are appropriately matched, specifically when V center of mass equals wR. The discussion emphasizes the relationship between linear and angular velocities and how they can be solved using equations of motion.
chaose
Messages
10
Reaction score
0
A bowler throws a bowling ball of radius R=0.11m along a lane. The ball slides on the lane with initial speed V of center of mass = 8.5 m/s and initial angular speed w = 0. The coefficient of kinetic friction between the ball and the lane is 0.21. The kinetic frictional force f acting on the ball causes a linear acceleration of the ball while producing a torque that causes an angular acceleration of the ball. When speed V of center of mass has decreased enough an angular speed w has increased enough, the ball stops sliding and then rolls smoothly.
A) What then is V center of mass in terms of w?

During the sliding, what are the ball's
B) linear acceleration and
C) angular acceleration?
D) how long does the ball slide?
E) how far does the ball slide?
F) what is the linear speed of the ball when smooth rolling begins?

The rotational inertia of a sphere is I = 2/5 mR^2.

What I have so far:

a) V center of mass = wR = 0.11w
b) f = -ma = umg, u = coefficient of kinetic friction.
a=-ug = -2.66m/s^2, negative because it's backwards. a here is linear acceleration.
c) torque = I*A = r x F, A = angular acceleration
2/5*(mR^2) A = rumg
A = (5/2R)*ug = 46.82 rad/s
 
Last edited:
Physics news on Phys.org
chaose said:
A bowler throws a bowling ball of radius R=0.11m along a lane. The ball slides on the lane with initial speed V of center of mass = 8.5 m/s and initial angular speed w = 0. The coefficient of kinetic friction between the ball and the lane is 0.21. The kinetic frictional force f acting on the ball causes a linear acceleration of the ball while producing a torque that causes an angular acceleration of the ball. When speed V of center of mass has decreased enough an angular speed w has increased enough, the ball stops sliding and then rolls smoothly.
A) What then is V center of mass in terms of w?

During the sliding, what are the ball's
B) linear acceleration and
C) angular acceleration?
D) how long does the ball slide?
E) how far does the ball slide?
F) what is the linear speed of the ball when smooth rolling begins?

The rotational inertia of a sphere is I = 2/5 mR^2.

What I have so far:

a) V center of mass = wR = 0.11w
b) f = -ma = umg, u = coefficient of kinetic friction.
a=-ug = -2.66m/s^2, negative because it's backwards. a here is linear acceleration.
c) torque = I*A = r x F, A = angular acceleration
2/5*(mR^2) A = rumg
A = (5/2R)*ug = 46.82 rad/s
If you have both accelerations correct, you can write the equations for velocities in terms of time. At some time the "final" velocities will correspond to rolling. The velocity values and the time are three unknowns, but you have three equations. They can be solved for the velocities and the time. D, E, and F are all related to these variables.
 
thanks. i didn't think of that
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top