How Does Lorentz's Equation Transform into Cauchy's Law?

Click For Summary

Homework Help Overview

The discussion revolves around the transformation of the Lorentz equation for refractive indexes into Cauchy's empirical law under the condition that the frequency is much smaller than the resonant frequency. Participants are exploring the relationship between the parameters of the Lorentz model and the coefficients in Cauchy's law.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants are attempting to manipulate the Lorentz equation to derive Cauchy's law, questioning how to express the coefficients A and B in terms of the Lorentz model parameters. There are discussions about approximating expressions when certain variables are small, and how to rearrange terms to facilitate the transformation.

Discussion Status

The discussion is ongoing, with participants providing hints and asking questions to guide each other. Some have suggested specific approximations and rearrangements, while others are seeking clarification on how to proceed with the derivation.

Contextual Notes

There is a requirement for participants to show more work and engage with the problem more deeply, as indicated by a moderator's comment. The original poster is encouraged to explore their reasoning further and utilize hints provided by others.

DannyJ108
Messages
23
Reaction score
2
New user has been reminded to show their work on schoolwork questions
Homework Statement
Prove that when frequency is small, the Lorentz model for a refractive index in dielectrics becomes Cauchy's empirical law
Relevant Equations
##n^2(\omega) = 1 + \frac {\omega^2_p} {\omega^2_0 - \omega^2}##
##n(\lambda)=A+\frac B {\lambda^2}##
Hello fellow physicists,

I need to prove that when ##\omega << \omega_0##, Lorentz equation for refractive indexes:
##n^2(\omega) = 1 + \frac {\omega^2_p} {\omega^2_0 - \omega^2}##
turns into Cauchy's empirical law:
##n(\lambda)=A+\frac B {\lambda^2}##
I also need to express A and B as a function of the Lorentz model parameters: ##\omega_0## and ##\omega_p##, where:
##\omega_0##: resonant frequency
##\omega_p##: plasma frequency

Any idea on how I could approach and do this?

Thank you in advance!
 
Physics news on Phys.org
Do you know how to approximate ##\large \frac 1 {1-x}## when ##x \ll 1##?
 
TSny said:
Do you know how to approximate ##\large \frac 1 {1-x}## when ##x \ll 1##?
Yes, I do, but I don't know how I would get that expression with the equation I have. If ##\omega << \omega_0## , the equation would result in:
##n^2(\omega) = 1 + \frac {\omega^2_p} {\omega^2_0}##
 
DannyJ108 said:
If ##\omega << \omega_0## , the equation would result in:
##n^2(\omega) = 1 + \frac {\omega^2_p} {\omega^2_0}##
Whoa. :wideeyed: That's going too far.

If ##\omega \ll \omega_0##, how does ##\frac {\omega^2} {\omega_0^2}## compare to 1?

If you let ##x = \frac {\omega^2} {\omega_0^2}##, can you rearrange the denominator in ##n^2(\omega)## to get a factor of ##1-x##?
 
  • Like
Likes   Reactions: DannyJ108 and vanhees71
DannyJ108 said:
Homework Statement:: Prove that when frequency is small, the Lorentz model for a refractive index in dielectrics becomes Cauchy's empirical law
Relevant Equations:: ##n^2(\omega) = 1 + \frac {\omega^2_p} {\omega^2_0 - \omega^2}##
##n(\lambda)=A+\frac B {\lambda^2}##

Hello fellow physicists,

I need to prove that when ##\omega << \omega_0##, Lorentz equation for refractive indexes:
##n^2(\omega) = 1 + \frac {\omega^2_p} {\omega^2_0 - \omega^2}##
turns into Cauchy's empirical law:
##n(\lambda)=A+\frac B {\lambda^2}##
I also need to express A and B as a function of the Lorentz model parameters: ##\omega_0## and ##\omega_p##, where:
##\omega_0##: resonant frequency
##\omega_p##: plasma frequency

Any idea on how I could approach and do this?

Thank you in advance!
@DannyJ108 -- You are required to show more work at PF. Please use the hints provided by @TSny to motivate you to post your best efforts on this problem. Thank you.
 
  • Like
Likes   Reactions: TSny
TSny said:
Whoa. :wideeyed: That's going too far.

If ##\omega \ll \omega_0##, how does ##\frac {\omega^2} {\omega_0^2}## compare to 1?

If you let ##x = \frac {\omega^2} {\omega_0^2}##, can you rearrange the denominator in ##n^2(\omega)## to get a factor of ##1-x##?

I have rearranged the equation to get:
##n^2(\omega)=1+\frac {\frac {\omega_p^2} {\omega_0^2}} {1-\frac {\omega^2} {\omega_0^2}}##

Since ##\omega << \omega_0##, ##\frac {\omega^2} {\omega_0^2}## will be smaller than 1, so I can expand that fraction as a Taylor series to get:

##n(\lambda)=\sqrt{1+\frac {\omega_p^2} {\omega_0^2} + \frac {\omega_p^2} {\omega_0^4}4\pi^2 c^2 \frac {1} {\lambda^2}} (eq.1)##

Where I have used: ##\omega=\frac {2\pi c} \lambda##

However, in Cauchy's law, ##n## is not squared:

##n(\lambda)=A+\frac B {\lambda^2}##

So I don't know how I could group the terms in ##eq. 1## to establish the ##A## and ##B## coefficients, I do however get the ##\lambda^2## in the denominator, so that's a good thing.

How could I proceed from here?
 
Last edited:
How would you approximate ##\sqrt{a + b}## assuming ##b \ll a##?
 
TSny said:
How would you approximate ##\sqrt{a + b}## assuming ##b \ll a##?
But I'm not approximating ##\sqrt{a + b}## I'm approximating:
##\sqrt{1 + a + b}##
 
DannyJ108 said:
But I'm not approximating ##\sqrt{a + b}## I'm approximating:
##\sqrt{1 + a + b}##
Let ##a' = 1+a##. Then you have ##\sqrt{a' + b}##.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
17
Views
3K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K