How does one calculate his distance to the center?

  • Thread starter Thread starter moonman239
  • Start date Start date
  • Tags Tags
    Center
AI Thread Summary
To calculate the distance from an observer to the center of the Earth, start with the mean radius of Earth, which is approximately 6,371 kilometers. If the observer is at an altitude of 600 miles (about 966 kilometers), the total distance to the center is calculated by adding the mean radius and the altitude. This results in an approximate distance of 7,338 kilometers from the center of the Earth. The discussion emphasizes the importance of understanding the mean radius and altitude in determining this distance. Visual aids may help clarify the calculation process.
moonman239
Messages
276
Reaction score
0
Let's assume that an observer on a perfectly ellipsoidal Earth determines that his distance to the center of Earth is 6372 kilometers, not counting his altitude. If his altitude is 600 miles above mean sea level, then approximately how far is he in actuality from the center?
 
Physics news on Phys.org
Hi Moonman 239, give my regards to the other 238! (Or however many there are; I guess more might have joined since you.)

As no values for the semimajor and semiminor axes are given in your question, I'll take the first and simplest kind of mean radius (mean sea level) estimate by the IUGG, International Union of Geodesy and Geophysics, from here ( http://en.wikipedia.org/wiki/Earth_radius#Mean_radii ), namely 6 371 km. I reckon your observer would be 6 371 km + (6 372 - 6 371) km + 966 km = 6 372 km + 966 km = 7 338 km from the centre. That is, the observer's radial distance not including their altitude, plus the difference between their radial distance and the mean, plus their altitude above the mean. Or, more simply, the observer's altitude above the mean plus the mean. Does that sound reasonable? If it doesn't make sense, try drawing a picture. Don't trust me though, I might have made a mistake, or misunderstood the question.
 
Equatorial radius = 6378.137 km
Polar radius = 6356.7523 km
 
Thanks for the answer.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top