How does one write a matrix in this forum?

  • Thread starter Thread starter interested_learner
  • Start date Start date
  • Tags Tags
    Forum Matrix
interested_learner
Messages
210
Reaction score
1
I tried to enter a matrix in this forum and all I get is a big mess when I go to preview the matrix. It seems that the tool decides to get rid of the spaces in the matrix. These spaces are important. For instance if k = the rotation matrix with the first row 0 -1 and the second row 1 0

_ _
| 0 -1 |
k= |_ 1 0 _|

Does someone have a suggestion on a better way to write this?
 
Physics news on Phys.org
Click on the following to see the code:

\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}

If you want brackets, then:

\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]

Notice that the amount of c's control the columns, such as:

\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array} \right)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top