Oh my goodness, that is extremely clever! From the schematic it appears that the device works a lot like LIGO, or a long baseline interferometer telescope. A single beam of light travels to a beam splitter, then proceeds along two separate paths. One path leads to the target of the scan ( the tissue to be scanned), and the other leads to an adjustable mirror, set to the same depth as that target. The light that is sent to the mirror bounces back and goes into the photo receptor. Of The light that goes into the target tissue, some returns. Some of that return signal is light that was reflected off the target, but a lot of it is light that was reflected off the surface (the skin of the patient), and some of it was refracted multiple times, and returned as backscatter. These latter two signals are “noise”, which would normally clutter up the picture and make it hard to see.
However, the light that reflects off of the skin travels a shortened distance, and arrives too soon, while the backscatter noise has traveled a longer distance, and arrives too late. Light that reflects off of the intended target travels exactly the same distance as light returning from the carefully placed mirror, and so it arrives at exactly the same time. This light gets amplified by positive interference, and the image processor can probably filter out much of the remaining noise, just by ignoring any signal that doesn’t arrive at the same time as the reference signal (from the mirror).
This is absolutely brilliant! Thank you for introducing me to it.