back2square1
- 13
- 0
L[sin(at)]=\frac{a}{s^{2}+a^{2}}, Re<s>>0</s>
L[e^{kt}]=\frac{1}{s-k}, s>k
L[e^{-kt}]=\frac{1}{s+k}, s<-k
L[sin(at)]=\frac{1}{2i}L[e^{iat}-e^{-iat}]
=\frac{1}{2i}L[e^{iat}]-L[e^{-iat}]
Using the above relations
=\frac{1}{2i}[\frac{1}{s-ia}-\frac{1}{s+ia}], s>ia, s<-ia
The problem is that I don't understand, how s>ia and s<-ia could imply that Real part of s>0?
L[e^{kt}]=\frac{1}{s-k}, s>k
L[e^{-kt}]=\frac{1}{s+k}, s<-k
L[sin(at)]=\frac{1}{2i}L[e^{iat}-e^{-iat}]
=\frac{1}{2i}L[e^{iat}]-L[e^{-iat}]
Using the above relations
=\frac{1}{2i}[\frac{1}{s-ia}-\frac{1}{s+ia}], s>ia, s<-ia
The problem is that I don't understand, how s>ia and s<-ia could imply that Real part of s>0?