jartsa said:
because ##\Delta v## is small, we can say that in this frame rails change velocity by kΔv
No, you can't. The constraint is not that the ratio of velocities is ##\gamma##. The constraint is that momentum has to be conserved when calculated in any particular frame. So in the rail frame, the momentum change of the rails must be equal and opposite to the momentum change of the train.
So if the rails have rest mass ##M## and the train has rest mass ##m## (note that it's a good idea not to use the same symbol for both rest masses, as you did), and the rails change velocity by ##\Delta V## in the rail frame (the frame where the rails are at rest before the velocity change), and the train changes velocity by ##\Delta v##, then momentum conservation gives ##M \Delta V = \gamma' m \left( v + \Delta v \right) - \gamma m v##, where ##\gamma## is the gamma factor for velocity ##v## and ##\gamma'## is the gamma factor for velocity ##v + \Delta v##, where ##v## is the train's initial velocity in this frame. So the rails will have final velocity ##- \Delta V## and the train will have final velocity ##v + \Delta v##.
Expanding out the momentum change of the train and assuming ##\Delta v << v##, we get
$$
m \left( v + \Delta v \right) \left[ 1 - \left( v + \Delta v \right)^2 \right]^{- \frac{1}{2}} - m v \left( 1 - v^2 \right)^{- \frac{1}{2}} = \frac{1}{2} m \left( 2 v^2 \Delta v + v \Delta v^2 + \Delta v + v^2 \Delta v + 2 v \Delta v ^2 + \Delta v^3 \right) \approx \frac{1}{2} m \Delta v \left( 1 + 3 v^2 \right)
$$
So we have ##\Delta V = \frac{m}{M} \Delta v \frac{1}{2} \left( 1 + 3 v^2 \right)##.
If we then transform into the train frame (the frame in which the train is at rest before the velocity change), then each of these final velocities gets transformed using the velocity addition formula. This gives, for the train:
$$
\frac{\Delta v}{1 - v \Delta v}
$$
For the rails:
$$
\frac{v + \Delta V}{1 + v \Delta V} = \frac{v + \frac{m}{M} \Delta v \frac{1}{2} \left( 1 + 3 v^2 \right)}{1 + \frac{m}{M} v \Delta v \frac{1}{2} \left( 1 + 3 v^2 \right)}
$$
If we assume that ##m << M## and ##\Delta v << 1##, then we are left with a simple change in speed of ##\Delta v## for the train and zero for the rails in both frames. But in any case, the relationship between the two velocity changes is certainly not a simple factor of ##\gamma##.