TFM
- 1,016
- 0
Homework Statement
Give a definition of (self) inductance. Suppose a battery, which supplies a constant EMF ϵ_0 is connected to a circuit of resistance R and inductance L at t = 0. Find an expression for the current as a function of time.
Homework Equations
V = IR
V = -L\frac{dI}{dt} [/tex<br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> I am assuming that this is to be treated as a Kirchoff Loop, thus the total voltage = 0<br /> <br /> <i> Voltage providers: </i><br /> <br /> Inductor<br /> Battery<br /> <br /> <i> Users: </i><br /> <br /> Resistor<br /> <br /> Thus I have the equation:<br /> <br /> \epsilon - L\frac{dI}{dt} - IR = 0<br /> <br /> and thus:<br /> <br /> \epsilon - L\frac{dI}{dt} = IR<br /> <br /> treating like a differential equation:<br /> <br /> \epsilon - L\frac{dI}{dt} = IR<br /> <br /> \epsilon dt - L dI = IR dt<br /> <br /> rearrange:<br /> <br /> \frac{L}{IR} dI = -dt + \epsilon dt<br /> <br /> Gives:<br /> <br /> \frac{1}{L}ln(IR) dI = -t + \epsilon t<br /> <br /> multiply by L<br /> <br /> ln(IR) = -Lt + \epsilon t [/tex<br /> <br /> take exponentials:<br /> <br /> IR = e^{-Lt} + e^{\epsilon t}<br /> <br /> Does this look right so far?<br /> <br /> TFM