I How Does Shankar's PQM Derive Schrödinger's Equation?

  • I
  • Thread starter Thread starter hideelo
  • Start date Start date
hideelo
Messages
88
Reaction score
15
On page 230 in Shankar's PQM (1994 edition) he is trying to show that the path integral formulation reduces to Schroedinger's eqn. The equation he comes up against is the following

$$\psi (x,\epsilon) = \sqrt{\frac{m}{2 \pi i \epsilon \hbar}}\int_{-\infty}^{\infty}dx' \psi (x',0) \exp\left[\frac{im(x-x')^2}{2\epsilon \hbar} \right] \exp\left[\frac{-i\epsilon}{ \hbar} V\left( \frac{x+x'}{2},0\right) \right]$$

He makes the argument that the first exponential is going to oscillate like hell because ##\epsilon \hbar## is so small. He says that in order to keep this under control we need to restrict the range of x' so that

$$\frac{m \eta^2}{2\epsilon \hbar} \leq \pi$$
where
$$\eta = (x-x')$$

which I follow. He then changes the variable of integration from x' to ##\eta##, no big deal. He expands everything inside the integral to second order in ##\eta## because that corresponds to first order in ##\epsilon##. I'm still on board. He then integrates over ##\eta## from ##-\infty## to ##\infty## and this is where he loses me. What happened to ##\frac{m \eta^2}{2\epsilon \hbar} \leq \pi## ? The way he expressed everything inside the integral assumed that ##\eta## is small. So why is he integrating over the whole range of ##\eta##?
 
Physics news on Phys.org
It doesn't matter, because ##\epsilon \hbar## is so small. That's the usual way to evaluate an integral approximately with the method of steepest descent. You usually get an asymptotic series with that technique.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top