I How Does the Book's Formula for Angular Momentum Differ from Mine?

AI Thread Summary
The discussion centers on the differences in calculating angular momentum for a disc between a user's method and a book's formula. The user calculates angular momentum using the equation L = I_x ω_x + I_y ω_y + I_z ω_z, while the book includes an additional term, L_s sin θ_y, suggesting a different approach. Questions arise regarding the initial conditions of the disc's rotation and the definitions of the angular velocity components and moments of inertia. Clarifications are sought on the user's calculations and the context of the disc's motion. Understanding these distinctions is crucial for accurate angular momentum analysis.
Kashmir
Messages
466
Reaction score
74
A disc initially has angular velocities as shown
IMG_20210707_220620.JPG

It's angular momentum along the y-axis initially is ##L_s##
I tried to find its angular momentum and ended up with this:##L=I_{x} \omega_{x}+I_{y} w_{y}+I_{z} z_{z}##The z component of angular momentum is thus ##L_{z}=I_{z} \omega_{z}##

However I found a similar situation in a book
IMG_20210707_223058.JPG
IMG_20210707_221438.JPG


that writes the components of angular momentum along x as ##L_{x}=I_{x x} \frac{d \theta_{x}}{d t}+L_{s} \sin \theta_{y}##

The book has an additional term ##L_{s} \sin \theta_{y}## for the angular momentum which I don't.

Why am I wrong ?
 
Last edited:
Physics news on Phys.org
Your question is not completely clear. Perhaps the disc is initially spinning with an ## L_s ## and then given an additional rotation. Otherwise a magnetization of the disc could also make for an ## L_s ##, but in general ## L_s ## from any magnetization would be very small.
 
Are you asking for an expression for the angular momentum of a disk where the rotation axis is not perpendicular to the disk? Your drawing is not clear.

Are ##\omega_x, \omega_y## and ##\omega_z## the cartesian coordinates of ##\vec\omega##? How are ##I_x##, ##I_y## and ##I_z## defined? Can you describe your calculations?
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top