I How Does the Book's Formula for Angular Momentum Differ from Mine?

Click For Summary
The discussion centers on the differences in calculating angular momentum for a disc between a user's method and a book's formula. The user calculates angular momentum using the equation L = I_x ω_x + I_y ω_y + I_z ω_z, while the book includes an additional term, L_s sin θ_y, suggesting a different approach. Questions arise regarding the initial conditions of the disc's rotation and the definitions of the angular velocity components and moments of inertia. Clarifications are sought on the user's calculations and the context of the disc's motion. Understanding these distinctions is crucial for accurate angular momentum analysis.
Kashmir
Messages
466
Reaction score
74
A disc initially has angular velocities as shown
IMG_20210707_220620.JPG

It's angular momentum along the y-axis initially is ##L_s##
I tried to find its angular momentum and ended up with this:##L=I_{x} \omega_{x}+I_{y} w_{y}+I_{z} z_{z}##The z component of angular momentum is thus ##L_{z}=I_{z} \omega_{z}##

However I found a similar situation in a book
IMG_20210707_223058.JPG
IMG_20210707_221438.JPG


that writes the components of angular momentum along x as ##L_{x}=I_{x x} \frac{d \theta_{x}}{d t}+L_{s} \sin \theta_{y}##

The book has an additional term ##L_{s} \sin \theta_{y}## for the angular momentum which I don't.

Why am I wrong ?
 
Last edited:
Physics news on Phys.org
Your question is not completely clear. Perhaps the disc is initially spinning with an ## L_s ## and then given an additional rotation. Otherwise a magnetization of the disc could also make for an ## L_s ##, but in general ## L_s ## from any magnetization would be very small.
 
Are you asking for an expression for the angular momentum of a disk where the rotation axis is not perpendicular to the disk? Your drawing is not clear.

Are ##\omega_x, \omega_y## and ##\omega_z## the cartesian coordinates of ##\vec\omega##? How are ##I_x##, ##I_y## and ##I_z## defined? Can you describe your calculations?
 
For fun I was trying to use energy considerations to determine the depth to which a solid object will sink in a fluid to reach equilibrium. The first approach that I tried was just to consider the change in potential energy of the block and the fluid as the block is lowered some unknown distance d into the fluid similar to what is shown in the answer to this post. Upon taking the limit as the vessel's cross sectional area approaches infinity I have an extra factor of 2 in the equilibrium...
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top