How does the potential for Quantum Mechanics differ between two scenarios?

ynuo
Messages
18
Reaction score
0
How does this potential:

V(x)={Inf for x<0, bx for 0<x<a, Inf for x>a}

differ from:

V(x)={Inf for x<0, bx for x>0}

with regards to Schrodinger's equation, wave functions, and the energy states.

P.S. the tex graphics are not showing when I try to post my question using tex macros. This is why I resorted to plain ascii.
 
Physics news on Phys.org
Do you know how to treat an infinite potential within the context of 1-dim SE ?
 
This is the part that I have trouble with. I know that if I had a constant
potential or any other type of potential, then a substitution in Schrodinger's
equation will be required. From there I will have to solve a DE. But in
the case of infinite potential I am not sure.
 
Saying 'infinite potential' specifies a boundary condition for the DE. Guess which one?
 
I think I got it. Thanks.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top