How Does Velocity Change with Time in a Spiral Path?

AI Thread Summary
The discussion focuses on deriving the expression for velocity as a function of time in a spiral path using polar coordinates. The user attempts to express tangential speed and questions the correctness of their approach, specifically regarding the substitution of radial distance and differentiation. There is confusion about the dimensional correctness of the derived formula and whether the equations used are appropriate. The conversation highlights the need for clarity in applying polar coordinate transformations to velocity components. Ultimately, the user seeks validation of their calculations and understanding of the underlying physics.
roam
Messages
1,265
Reaction score
12

Homework Statement



http://img534.imageshack.us/img534/6164/questionv.jpg

Homework Equations



ω = dθ/dt

v = dS/dt

The Attempt at a Solution



I used the second expression for the tangential speed:

v = \frac{dS}{dt} = r \frac{d \dot{\theta}}{d t} = (b-ct) \frac{d(kt)}{dt}

\therefore \ v(t) = (b-ct) k

So is this a correct expression for speed as a function of time? :confused:

So when r=0, the velocity would also be 0?
 
Last edited by a moderator:
Physics news on Phys.org
in polar coordinates v2=(dr/dt)2+(rd\theta/dt)2
 
roam said:
v = \frac{dS}{dt} = r \frac{d \dot{\theta}}{d t} = (b-ct) \frac{d(kt)}{dt}
is it dimensionally correct?
 
I just substituted the rate of change of radial distance into the equation v = r.dθ/dt, and then I differentiated it. What's wrong with that? :confused:
 
I think it's dimensionally correct. Why? Did I use the wrong equations?
 
roam said:
I just substituted the rate of change of radial distance into the equation v = r.dθ/dt, and then I differentiated it. What's wrong with that? :confused:

In this case, I think this formula isn't correct.
So, <br /> \vec{r}=r\cos(\theta)\hat{x}+r\sin(\theta)\hat{y}<br /> \\<br /> \vec{v}=\frac{d\vec{r}}{dt}<br /> \\<br /> v_x=\frac{d(r\cos(\theta))}{dt}=\cos(\theta)\frac{dr}{dt}+r\frac{d(\cos\theta)}{dt}=\cos(\theta) \frac{dr}{dt}-r\sin\theta \frac{d\theta}{dt}<br /> \\<br /> v_y=\frac{d(r\sin(\theta))}{dt}=\sin(\theta)\frac{dr}{dt}+r\cos\theta\frac{d\theta}{dt}<br /> \\<br /> v^2=(v_x)^2+(v_y)^2=(\frac{dr}{dt})^2+(r\frac{d \theta}{dt})^2<br /> <br />
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top