How electric potential boundary condition works

AI Thread Summary
The discussion revolves around understanding electric potential boundary conditions in a system with a dielectric sphere and a conductive shell. The key equation in question is ε2(∂Vout/∂r) - ε1(∂V/∂r) = -σ(θ)/ε0, where the participants debate the meaning of σ(θ) and whether it refers to induced charge density or free charge density. Clarifications indicate that the left side of the equation should reflect the radial components of electric field E rather than displacement D, and that σ(θ) should represent total charge density, including both free and bound charges. The conversation emphasizes the importance of distinguishing between free charge density on the boundary and the total charge density when applying boundary conditions. The participants ultimately reach a consensus on the correct interpretation of the boundary conditions in the context of their problem.
tomasg
Messages
3
Reaction score
0

Homework Statement


[/B]
Inside a sperical dielectric mass there is a electric dipole on the center of the sphere. The sphere has radius a. This dieletric sphere is inside and on the center of a conductive spherical shell of radius b. The problem asks to find the potentials and then the electric fields in every region, inside the dielectric sphere, the space between the sphere and the shell and outside the shell.

Homework Equations


Its given that p=p0*z (the dipole looks towards +z )

The Attempt at a Solution


[/B]
Now, i have written all the potentials (the solutions of laplace) but i noticed that i haven't fully understood one boundary condition for the electric potential. The one that says ε2(∂Vout/∂r)-ε1(∂V/∂r)=-σ(θ)/ε0.
The problem doesn't say anything about the charge of the shell, so i suppose is zero. So my question is this, does the σ(θ) of the above condition refers to the induced charge density (which would not be zero in this example i think) or the charge density of the shell alone?
 
Physics news on Phys.org
well I'm not an expert so pardon me if I'm wrong...But the above equation refers to the discontinuity of the electric field in the boundaries of two media,which is derived from Gauss' law.And the charge density in Gauss' law is the net charge density(due to induction too).So I think the charge density refers to the net charge density,which in this case is the induce charge density...
 
Thanks for the reply. I believe this is true too. Atleast that's what i have understand after reading more caerefully griffith's book
 
tomasg said:
ε2(∂Vout/∂r)-ε1(∂V/∂r)=-σ(θ)/ε0.
This equation does not look quite right. The left side gives the change in the radial component of D (not E). The right hand side should then be -σfree(θ) without any ε0.

σfree is the free charge density on the boundary surface between the two dielectric materials.

If you wrote the left hand side without the ε2 and ε1 as ∂Vout/∂r- ∂V/∂r, then you now have radial components of E. Then the right hand side would be -σ(θ)/ε0 and σ(θ) would be the total surface charge density (free plus bound).

I have an older 3rd edition of Griffiths. In this edition, there is a section 4.3.3 called "Boundary Conditions". Here you find the equations

Dabove - Dbelow = σf where σf is free charge density.

and

Eabove - Ebelow = σ/ε0 where σ is total charge density.
 
Last edited:
TSny said:
This equation does not look quite right. The left side gives the change in the radial component of D (not E). The right hand side should then be -σfree(θ) without any ε0.

σfree is the free charge density on the boundary surface between the two dielectric materials.

If you wrote the left hand side without the ε2 and ε1 as ∂Vout/∂r- ∂V/∂r, then you now have radial components of E. Then the right hand side would be -σ(θ)/ε0 and σ(θ) would be the total surface charge density (free plus bound).

I have an older 3rd edition of Griffiths. In this edition, there is a section 4.3.3 called "Boundary Conditions". Here you find the equations

Dabove - Dbelow = σf where σf is free charge density.

and

Eabove - Ebelow = σ/ε0 where σ is total charge density.

yes i should not put the ε0 there. Thank you so much sir for the answer. It finally makes sense to me. And as the user above said, the Eabove - Ebelow = σ/ε0= (σf+σb)/ε0 <--- in this equation the σf could be the induced charge density or the charge density we created in the conductor (or both). Right?
 
tomasg said:
And as the user above said, the Eabove - Ebelow = σ/ε0= (σf+σb)/ε0 <--- in this equation the σf could be the induced charge density or the charge density we created in the conductor (or both). Right?
I'm not sure I'm understanding your question. In your problem, the inner surface of the conducting sphere will have a free charge density σf which is the charge density induced on the inner surface of the spherical conductor by the dielectric sphere with the dipole. So if you are applying the equation to the inner surface of the conductor, the σ in σ/ε0 would be this σf.
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top