How Fast Does an Electrical Impulse Travel in a Copper Wire?

  • Context: Undergrad 
  • Thread starter Thread starter Byron Forbes
  • Start date Start date
  • Tags Tags
    Electricity Speed
Click For Summary

Discussion Overview

The discussion revolves around the speed at which an electrical impulse travels in a copper wire, focusing on the nature of the electrical signal, the role of electric and magnetic fields, and the implications for understanding wave propagation in conductive materials.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • Some participants assert that the electrical impulse travels at a speed just under the speed of light (c) and question the necessity of invoking electromagnetic (EM) fields in this context.
  • Others argue that a changing electric field inherently produces a magnetic field, thus making it impossible to separate the two in dynamic situations.
  • One participant suggests that what is perceived as a pure electric field by one observer may be seen as an electromagnetic field by another observer in motion, highlighting the relativity of field observations.
  • There is a discussion about the nature of waves in transmission lines, with some participants noting that longitudinal waves are not typical in such contexts and that the current itself may be better described as a transverse wave.
  • Some participants emphasize that the speed of the signal is determined by the electromagnetic field rather than the drift velocity of electrons, which is relatively slow.
  • One participant compares the propagation of the electrical impulse to sound waves, noting that the movement of electrons and their fields allows for instantaneous signal transmission despite the slow drift of electrons.
  • Another participant points out that while the signal may propagate at a speed less than c due to the mass of electrons, changes in their fields propagate at the speed of light.
  • There is a claim that the EM field does not travel within the wire but along its exterior, affecting the speed of propagation depending on the wire's insulation and design.

Areas of Agreement / Disagreement

Participants express multiple competing views regarding the role of electric and magnetic fields in the propagation of electrical impulses, and the discussion remains unresolved with no consensus on the nature of the impulse or the implications for speed.

Contextual Notes

Participants highlight various assumptions about the nature of electric fields, the role of electromagnetic fields, and the characteristics of wave propagation in conductive materials, indicating that these factors may influence the understanding of the topic.

  • #91
anorlunda said:
Forgive me from being almost off-topic, but this thread reminds me of the following true anecdote.
Good example. That result cannot be explained only by current pushing inside the wire.
 
Physics news on Phys.org
  • #92
snorkack said:
Therefore electron movement must be the cause of electromagnetic field, not vice versa.
I think that's half the truth only. The other half is that the field affects or causes the current. It's a dynamic relation between the current and the field that works in both ways: current->field but also field->current so it is actually current<->field.
 
  • Like
Likes   Reactions: Dale
  • #93
Forgive me from being almost completely off-topic, but this thread reminds me of a story I heard. Google:

only there is no cat einstein

The attribution to Einstein is certainly false, maybe it should have been Maxwell :wink:.
 
  • #94
Dale said:
I already told you that I am not suggesting that (see post 79). You are apparently missing some of my posts above. In particular, did you miss the calculation of the speed of the longitudinal waves above (see post 75)? That is pretty conclusive that your approach does not work.

Yes, I did miss that somehow. Is there delays in posts appearing on here at times? Anyway, I'll respond to that now.
 
  • Like
Likes   Reactions: Dale
  • #95
In the following link, there is an explanation of plasmon oscillations, where an electron in a metal can mechanically vibrate at optical frequencies. This does not agree with the constraints imposed by the mechanical model mentioned in Post 75. If an electron can vibrate at such frequencies, it seems likely that it can form a transmission medium.
 
  • Like
Likes   Reactions: Byron Forbes
  • #96
Delta2 said:
I think that's half the truth only. The other half is that the field affects or causes the current. It's a dynamic relation between the current and the field that works in both ways: current->field but also field->current so it is actually current<->field.

I disagree with this completely.

Clearly, everything is initiated by electron movement. At that time you get a little inductance, depending on the magnitude of the acceleration of an electron. This would slow down the propagation because it is akin to increasing the mass of an electron. i.e. it is akin to increasing the density of a medium sound might travel through, thus yielding a slower speed.

Any other effect you might want to introduce, and I don't know what it would be, is surely not going to happen before or instead of the forces of repulsion between the electrons.

Lets take a length of wire and touch it against an object with static electricity. At the moment of touching, an electron flows from the object into the wire. At the onset, there is no EM wave. All there is is that electron accelerating toward another and an increase in the force of repulsion between them. How could any other force be in play? Clearly, if any EM effects are the result of the electron acceleration, they are neither happening before or even during the onset of acceleration. At a time shortly after the onset of acceleration there would be inductance from lateral electrons. But this inductance simply means a lesser resultant E field of repulsion.

The electrons push the ones ahead of them through the wire - the EM is a product of this and plays zero roll in it other than inductance.
 
  • Haha
  • Sad
Likes   Reactions: weirdoguy and davenn
  • #97
Dale said:
The speed of a longitudinal wave is given by ##\sqrt{K/\rho}## where ##K## is the bulk modulus and ##\rho## is the density. For the electrons in a copper conductor ##K=1.4 \ 10^{11}\text{ N/m}^2##, and ##\rho = 8.94 \ 10^{28}\text{ e/m}^3 \ 9.1 \ 10^{-31} \text{ kg/e}## so ##\sqrt{K/\rho} = 1.3 \ 10^{6} \text{ m/s} = 0.0045 \ c##. Actual signal velocities are much higher than that, and also actual signal velocities depend on the shape of the conductors, the relative positioning of the conductors, and the dielectric used between the conductors. None of that can be explained by the pure longitudinal model.

@Byron Forbes didn't mention this important thing:

Bulk modulus of copper is a measure of how much energy is needed to force some more copper atoms into some volume filled with copper.

Energy needed to force some more electrons into some volume filled with copper is much larger. This latter "bulk modulus" is relevant here.

(Let's assume that the lattice of positive charges just stays still when an electron density wave is passing through a wire)
 
Last edited:
  • Like
Likes   Reactions: Byron Forbes
  • #98
Dale said:
The speed of a longitudinal wave is given by ##\sqrt{K/\rho}## where ##K## is the bulk modulus and ##\rho## is the density. For the electrons in a copper conductor ##K=1.4 \ 10^{11}\text{ N/m}^2##, and ##\rho = 8.94 \ 10^{28}\text{ e/m}^3 \ 9.1 \ 10^{-31} \text{ kg/e}## so ##\sqrt{K/\rho} = 1.3 \ 10^{6} \text{ m/s} = 0.0045 \ c##. Actual signal velocities are much higher than that, and also actual signal velocities depend on the shape of the conductors, the relative positioning of the conductors, and the dielectric used between the conductors. None of that can be explained by the pure longitudinal model.

There are values for the electron density in a conductor that make it the same as the density of a medium that might carry air? And also values for it's bulk modulus in the same manner?

I doubt this very much but I'd be happy for you to point these out to me so that I can see who worked this out and how.

Do you have a scientific paper? :)
 
  • Haha
  • Sad
Likes   Reactions: weirdoguy and davenn
  • #99
jartsa said:
Energy needed to force some more electrons into some volume filled with copper is much larger. This latter "bulk modulus" is relevant here.
They are essentially the same. It is not much larger. This should not be too surprising since most of the properties of a material are related to its electrons and how they interact with each other and with the nuclei.
 
Last edited:
  • #100
Dale said:
Good example. That result cannot be explained only by current pushing inside the wire.

Assuming I'm interpreting that story properly, you can.

There is a ton more inductance, akin to making the electrons heavier, and so the longitudinal wave travels slower. Or the modulus less - either way, electron acceleration is less and so a slower longitudinal wave.

It is always a case of electron repulsion minus inductance, which simply adds up to a reduced force of repulsion.
 
  • Haha
  • Sad
Likes   Reactions: weirdoguy and davenn
  • #101
Byron Forbes said:
There are values for the electron density in a conductor that make it the same as the density of a medium that might carry air?
Yes, that should be obvious. Electrons have very little mass relative to the nucleus and conduction electrons have about the same number density as the nuclei.

Byron Forbes said:
I doubt this very much but I'd be happy for you to point these out to me so that I can see who worked this out and how.

Do you have a scientific paper? :)
Sure, this is part of a standard classroom exercise, lecture notes, and standard published data:

##K=1.4 \ 10^{11}\text{ N/m}^2## from exercise 4 at http://www-sp.phy.cam.ac.uk/~je102/CMP/CMP_Examples_2_2008-9.pdf

##8.94 \ 10^{28}\text{ e/m}^3## from slide 15 http://web.mst.edu/~vojtat/class_2135/lectures/lecture10/lecture10.pdf

## \ 9.1 \ 10^{-31} \text{ kg/e}## https://physics.nist.gov/cgi-bin/cuu/Value?me

Anyway, since even after 100 posts you still have yet to provide any scientific support for your position we will consider the matter closed. If you would like to reopen it please do so with said support. You have been adequately instructed here and there is really nothing more to discuss.
 
  • Like
  • Skeptical
Likes   Reactions: davenn, berkeman, weirdoguy and 3 others

Similar threads

  • · Replies 61 ·
3
Replies
61
Views
6K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 73 ·
3
Replies
73
Views
6K
  • · Replies 4 ·
Replies
4
Views
4K