Reshma
- 749
- 6
The Charge density of an electron cloud for a Hydrogen atom is given by:
\rho (r) = \left(\frac{q}{\pi a^3}\right)e^{\frac{-2r}{a}}
Find its polarizability(\alpha).
My work:
Dipole moment p is:
\vec p = \alpha \vec E
I need to calculate the electric field first.
The electric field is given by Gauss's law:
\vec E = \left(\frac{1}{4\pi \epsilon_0}\right)\frac{Q_{total}}{r^2}\hat r
Q_{total} = \int_{0}^{r} \rho (r)d\tau
Q_{total} = \int_{0}^{r} \left(\frac{q}{\pi a^3}\right) e^{\frac{-2r}{a}} 4\pi r^2 dr
Q_{total} = \frac{4q}{a^3} \int^{r}_{0} e^{\frac{-2r}{a}} r^2 dr
How is this integral evaluated?
\rho (r) = \left(\frac{q}{\pi a^3}\right)e^{\frac{-2r}{a}}
Find its polarizability(\alpha).
My work:
Dipole moment p is:
\vec p = \alpha \vec E
I need to calculate the electric field first.
The electric field is given by Gauss's law:
\vec E = \left(\frac{1}{4\pi \epsilon_0}\right)\frac{Q_{total}}{r^2}\hat r
Q_{total} = \int_{0}^{r} \rho (r)d\tau
Q_{total} = \int_{0}^{r} \left(\frac{q}{\pi a^3}\right) e^{\frac{-2r}{a}} 4\pi r^2 dr
Q_{total} = \frac{4q}{a^3} \int^{r}_{0} e^{\frac{-2r}{a}} r^2 dr
How is this integral evaluated?
Last edited: