MHB How Is the Integral of the Square of Log-Sine Calculated?

  • Thread starter Thread starter The Lord
  • Start date Start date
  • Tags Tags
    Integrate Square
The Lord
Messages
4
Reaction score
0
Prove that

$$\int_0^{\pi/2} (\log \sin x )^2 dx = \frac{1}{24} \left(\pi ^3+12 \pi \log^2(2)\right)$$
 
Mathematics news on Phys.org
Hi! :D
I think I know how to solve this integral but my method is a little tedious. Anyway I will post my solution.

Let $\displaystyle I(n) = \int_0^{\pi/2}\sin ^n (x)dx$

$I(n)$ can be evaluated in terms of gamma function.

$$ I(n)= \int_0^{\pi/2}\sin ^n (x)dx = \frac{\sqrt{\pi} \Gamma \left( \frac{1+n}{2}\right)}{2\Gamma \left( 1+\frac{n}{2}\right)}$$

Differentiating with respect to n

$$ I'(n) = \int_0^{\pi/2}\sin^n (x) \log(\sin x) dx = \\ \frac{\sqrt{\pi} \Gamma \left( \frac{1+n}{2}\right)}{4\Gamma \left( 1+\frac{n}{2}\right)} \left( \psi \left( \frac{1+n}{2}\right) -\psi\left( 1+\frac{n}{2}\right)\right) \tag{1}$$

Let n=0

$$ I'(0) = \int_0^{\pi/2}\log(\sin x)dx = \frac{\sqrt{\pi} \sqrt{\pi}}{4} \left( \gamma -\gamma -2\ln(2)\right) = \frac{-\pi}{2}\ln(2)$$

$\gamma$ is the Euler-Mascheroni Constant. For the Square of Log-Sine we must differentiate (1) again.

$$I''(n)=\int_0^{\pi/2}\sin^n(x) (\log(\sin x))^2 dx = \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(1+\frac{n}{2}\right)^2}{8 \Gamma\left(1+\frac{n}{2}\right)}- \\ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(1+\frac{n}{2}\right) \psi\left(\frac{1+n}{2}\right)}{4 \Gamma\left(1+\frac{n}{2}\right)}+ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(\frac{1+n}{2}\right)^2}{8 \Gamma\left(1+\frac{n}{2}\right)}- \\ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi_1 \left(1+\frac{n}{2}\right)}{8 \Gamma \left(1+\frac{n}{2}\right)} + \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right)\psi_1\left(\frac{1+n}{2}\right)}{8 \Gamma\left(1+\frac{n}{2}\right)} \tag{2}$$

$\psi_1(z)$ is the PolyGamma Function. Put n=0.

$$I''(0) =\int_0^{\pi/2}\left( \log \sin x\right)^2 dx = \frac{1}{24}\left( \pi^3 +2\pi \log^2(2)\right)$$

Here, I have used

$\psi_1 \left( \frac{1}{2}\right)=\frac{\pi^2}{2}$

$\psi_1 \left( 1\right) = \frac{\pi^2}{6}$

$\psi \left( \frac{1}{2}\right) = -\gamma -2\ln(2)$

$\psi(1) = -\gamma$

and $\Gamma \left( \frac{1}{2}\right)=\sqrt{\pi}$

As I mentioned before, differentiating all the gamma and digamma can be tedious. Maybe Mr.Lord has a more elegant method in mind?
 
Last edited:
sbhatnagar said:
As I mentioned before, differentiating all the gamma and digamma can be tedious. Maybe Mr.Lord has a more elegant method in mind?

Great! This was my approach as well. (Yes)
 
Interesting problem...

The thing to do here is to consider the Beta function:

$$B(p,q)=2\int_0^{\pi/2}\sin^{2p-1}x\cos^{2q-1}\,dx\equiv \frac{2\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$Now differentiate $$\frac{2\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$ twice w.r.t $$p$$, which will give an expression in terms of the Beta function, Digamma, and Trigamma functions. Then set $$q=p=1/2$$, since:

$$\frac{d^2}{dp^2} B(p,q)\, \Bigg|_{p=q=1/2}\equiv\int_0^{\pi/2}\log^2(\sin x)\,dx$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top