How Is the Integral of the Square of Log-Sine Calculated?

  • Context: MHB 
  • Thread starter Thread starter The Lord
  • Start date Start date
  • Tags Tags
    Integrate Square
Click For Summary

Discussion Overview

The discussion revolves around the calculation of the integral of the square of the logarithm of the sine function, specifically the expression $$\int_0^{\pi/2} (\log \sin x )^2 dx$$. Participants explore various methods for evaluating this integral, including differentiation techniques involving the gamma function and the beta function.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes a solution involving the integral $$I(n) = \int_0^{\pi/2}\sin ^n (x)dx$$ and differentiates it to find $$I'(n)$$ and $$I''(n)$$, leading to an expression for $$\int_0^{\pi/2} (\log \sin x)^2 dx$$.
  • Another participant agrees with the initial approach and suggests that it may be tedious, hinting at the possibility of a more elegant method.
  • A different approach is introduced involving the beta function, where differentiating the beta function with respect to its parameters is suggested as a method to derive the integral in question.

Areas of Agreement / Disagreement

Participants express agreement on the validity of the methods discussed, but there is no consensus on which method is superior or more elegant. Multiple approaches are presented, indicating a lack of resolution on the best technique.

Contextual Notes

The discussion includes various mathematical functions and constants, such as the gamma function, digamma function, and polyGamma function, which may require specific definitions and properties that are not fully explored in the posts.

The Lord
Messages
4
Reaction score
0
Prove that

$$\int_0^{\pi/2} (\log \sin x )^2 dx = \frac{1}{24} \left(\pi ^3+12 \pi \log^2(2)\right)$$
 
Physics news on Phys.org
Hi! :D
I think I know how to solve this integral but my method is a little tedious. Anyway I will post my solution.

Let $\displaystyle I(n) = \int_0^{\pi/2}\sin ^n (x)dx$

$I(n)$ can be evaluated in terms of gamma function.

$$ I(n)= \int_0^{\pi/2}\sin ^n (x)dx = \frac{\sqrt{\pi} \Gamma \left( \frac{1+n}{2}\right)}{2\Gamma \left( 1+\frac{n}{2}\right)}$$

Differentiating with respect to n

$$ I'(n) = \int_0^{\pi/2}\sin^n (x) \log(\sin x) dx = \\ \frac{\sqrt{\pi} \Gamma \left( \frac{1+n}{2}\right)}{4\Gamma \left( 1+\frac{n}{2}\right)} \left( \psi \left( \frac{1+n}{2}\right) -\psi\left( 1+\frac{n}{2}\right)\right) \tag{1}$$

Let n=0

$$ I'(0) = \int_0^{\pi/2}\log(\sin x)dx = \frac{\sqrt{\pi} \sqrt{\pi}}{4} \left( \gamma -\gamma -2\ln(2)\right) = \frac{-\pi}{2}\ln(2)$$

$\gamma$ is the Euler-Mascheroni Constant. For the Square of Log-Sine we must differentiate (1) again.

$$I''(n)=\int_0^{\pi/2}\sin^n(x) (\log(\sin x))^2 dx = \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(1+\frac{n}{2}\right)^2}{8 \Gamma\left(1+\frac{n}{2}\right)}- \\ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(1+\frac{n}{2}\right) \psi\left(\frac{1+n}{2}\right)}{4 \Gamma\left(1+\frac{n}{2}\right)}+ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(\frac{1+n}{2}\right)^2}{8 \Gamma\left(1+\frac{n}{2}\right)}- \\ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi_1 \left(1+\frac{n}{2}\right)}{8 \Gamma \left(1+\frac{n}{2}\right)} + \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right)\psi_1\left(\frac{1+n}{2}\right)}{8 \Gamma\left(1+\frac{n}{2}\right)} \tag{2}$$

$\psi_1(z)$ is the PolyGamma Function. Put n=0.

$$I''(0) =\int_0^{\pi/2}\left( \log \sin x\right)^2 dx = \frac{1}{24}\left( \pi^3 +2\pi \log^2(2)\right)$$

Here, I have used

$\psi_1 \left( \frac{1}{2}\right)=\frac{\pi^2}{2}$

$\psi_1 \left( 1\right) = \frac{\pi^2}{6}$

$\psi \left( \frac{1}{2}\right) = -\gamma -2\ln(2)$

$\psi(1) = -\gamma$

and $\Gamma \left( \frac{1}{2}\right)=\sqrt{\pi}$

As I mentioned before, differentiating all the gamma and digamma can be tedious. Maybe Mr.Lord has a more elegant method in mind?
 
Last edited:
sbhatnagar said:
As I mentioned before, differentiating all the gamma and digamma can be tedious. Maybe Mr.Lord has a more elegant method in mind?

Great! This was my approach as well. (Yes)
 
Interesting problem...

The thing to do here is to consider the Beta function:

$$B(p,q)=2\int_0^{\pi/2}\sin^{2p-1}x\cos^{2q-1}\,dx\equiv \frac{2\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$Now differentiate $$\frac{2\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$ twice w.r.t $$p$$, which will give an expression in terms of the Beta function, Digamma, and Trigamma functions. Then set $$q=p=1/2$$, since:

$$\frac{d^2}{dp^2} B(p,q)\, \Bigg|_{p=q=1/2}\equiv\int_0^{\pi/2}\log^2(\sin x)\,dx$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K