How is the PDF of a Non One-to-One Transformation Derived for n Dimensions?

robbins
Messages
7
Reaction score
0
This is not homework. Case I is mostly for background. The real questions are in Case II.

Case I (one dimension):
a. Suppose X is a continuous r.v. with pdf fX(x), y = g(x) is one-to-one, and the inverse x = g-1(y) exists. Then the pdf of Y = g(X) is found by
f_Y(y) = f_X(g^{-1}(y) | (g^{-1})'(y) |.
All of the above is well-known (http://en.wikipedia.org/wiki/Density_function" ).

b. Now suppose the transformation g is not one-to-one. Denote the real roots of y = g(x) by xk, i.e., y = g(x1) = ... = g(xk). Then the pdf of Y = g(X) is
f_Y(y) = \sum_k = \frac{f_X(x_k)}{|g'(x_k)|}.
Again, this is (relatively) well-known.

Case II (n dimensions):
a. The case for n functions of n random variables where g is one-to-one is well-known (see link above):
f_Y(y) = f_X(g^{-1}(y))| J_{g^{-1}}(g(x)) |.
b. What about the case for n functions of n random variables where g is not one-to-one? Is there an analogous result to that in Case Ib? Can someone provide a reference?
c. What about the case for Y = g(X1, x2, ..., xn) where g : Rn -> R? [Note: Though g might still be one-to-one, we suppose that it is not.] The approach to Case IIc with which I am familiar is to construct an additional n-1 functions (often just using the identity function, but sometimes more effort is needed to choose functions so the Jacobian is nonzero), and then use the known method of Case IIa. Is there an approach analogous to that in Case Ib or Case IIb? Can someone provide a reference?

Thanks for any insights you can provide.
 
Last edited by a moderator:
Physics news on Phys.org
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top