How Many Endomorphisms Exist for Z/2Z?

  • Thread starter Thread starter jakelyon
  • Start date Start date
jakelyon
Messages
7
Reaction score
0
Can anyone tell me how many endomorphisms there are for Z/2Z? I think it is
two:

0 --> 0 and 1 --> 1

0 --> 0 and 1 --> 0
 
Physics news on Phys.org
What kind of algebraic structure do you have in mind? Group? Ring?
Sometimes a ring homomorphism (so in particular an endomorphism) is required to preserve the 1-element, which would rule out the second one.
 
I am thinking of group homomorphisms, so I know that it must map identities to identities. But I didn't think that it could only map identities to identities, thus not ruling out the second homomorphism. But then again, I am not 100% sure this is correct.
 
jakelyon said:
I am thinking of group homomorphisms, so I know that it must map identities to identities. But I didn't think that it could only map identities to identities, thus not ruling out the second homomorphism.
A ring has two operations, addition and multiplication. So there are also two "identities": 0 is the neutral element with respect to addition, 1 is the neutral element with respect to multiplication. These are distinct, unless for the trivial ring. A ring homomorphism is a group homomorphism, and at the same time respects multiplication.

But since we're only talking about the group structure, the above is not relevant. They are both endomorphisms. In fact, more generally, these maps are always endomorphisms for any group: the identity, which sends everything to itself, and the trivial one, which sends everything to the identity element (here 0).
 
Dear Landau,

Thanks for clearing things up for me. However, is two the order of Hom(Z_2, Z_2) or are there more?
 
No, the order is 2. Indeed, there are only four (=2^2) set functions between {0,1} and {0,1}, namely:
0->0, 1->0
0->0, 1->1
0->1, 1->0
0->1, 1->1

The requirement that f(0)=0 rules out the last two.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top