maxverywell said:
I read that the number of Einstein equations is 10 and because of Bianchi identity, it reduces to 6.
The Bianchi identities don't "reduce" the number of independent components; they just let you choose which specific equations you want to solve--do you want to solve all ten components of the EFE, or solve only six of them and four Bianchi identities instead?
However, the more important point is that the Einstein Field Equations are not equations for the metric tensor; they are equations for the Einstein tensor, which is composed of second derivatives of the metric tensor.
The full accounting, IIRC, goes like this (MTW goes into this, I don't have my copy handy to look up an exact reference):
The metric tensor is a symmetric 2nd-rank tensor, so it has 10 independent components. However, we can fix all 10 of them at a given event by an appropriate choice of coordinates for a local inertial frame, because a local Lorentz transformation has ten parameters (four translations to fix the origin, three spatial rotations to fix the orientation, and three boosts to fix the particular state of local inertial motion that is "at rest").
There are forty first derivatives of the metric tensor. We can eliminate all forty of them at a given event by an appropriate choice of coordinates--basically we choose Riemann normal coordinates to set all of the connection coefficients to zero at our chosen event.
There are one hundred second derivatives of the metric tensor. We can eliminate eighty of them at a given event by using symmetries of the Riemann tensor, leaving twenty independent components. Ten of these are the ten independent components of the Einstein tensor, which can be found by solving the EFE. The other ten are the components of the Weyl tensor, which are not constrained at a given event by the EFE. (But they *are* constrained if you have a solution of the EFE not just at a single event but over an entire spacetime.)