How many limit points can be in a countable subset of \mathbb{R}?

  • Thread starter Thread starter Unassuming
  • Start date Start date
  • Tags Tags
    Limit Sets
Unassuming
Messages
165
Reaction score
0
Could somebody check this to see if I am right?

a.) Construct a subset of \mathbb{R} with exactly two limit points.

\{ (-1)^n + \frac{1}{n} : n \in \mathbb{N} \}


b.) Find an infinite subset of \mathbb{R} with no limit points.

\mathbb{N}

c.) Construct a countable subset of \mathbb{R} with countably many limit points.

\{1- \frac{(-1)^n}{n}:n \in \mathbb{N} \}

d.) Find a countable subset of \mathbb{R} with uncountably many limit points.

\mathbb{Q}
 
Physics news on Phys.org
Right. Right. Right. Right. You are getting good at this. Unless in c) you need countably infinity and not just finite.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top