How Many Ordered Triples (a, b, c) Satisfy Given LCM Conditions?

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on determining the number of ordered triples (a, b, c) that satisfy specific LCM conditions: LCM(a, b) = 432, LCM(b, c) = 72, and LCM(c, a) = 432. The prime factorization reveals that LCM(a, b) corresponds to 24 × 33, LCM(b, c) to 23 × 32, and LCM(c, a) again to 24 × 33. The analysis indicates that the powers of 2 and 3 in the variables can be systematically derived, leading to a total of 35 valid combinations for (a, b, c).

PREREQUISITES
  • Understanding of Least Common Multiple (LCM) and its properties
  • Familiarity with prime factorization techniques
  • Knowledge of exponent rules in algebra
  • Basic combinatorial reasoning
NEXT STEPS
  • Study the properties of LCM in relation to prime factorization
  • Explore combinatorial counting techniques for ordered pairs
  • Learn about the implications of constraints on variable powers in algebraic expressions
  • Investigate similar problems involving LCM conditions and their solutions
USEFUL FOR

Mathematicians, students studying number theory, educators teaching algebraic concepts, and anyone interested in combinatorial mathematics.

juantheron
Messages
243
Reaction score
1
If $\bf{L.C.M}$ of $(a,b)$ is $432,$ and $\bf{L.C.M}$ of $(b,c)$ is $72,$ and $\bf{L.C.M}$ of $(c,a)$ is $432.$

Then the number of ordered pairs $(a,b,c)$ is

My Trail Solution:: First we will factorise in prime factor form.

$\bf{L.C.M}$ of $(a,b)$ is $ = 432 = 2^4 \times 3^3$

Similarly $\bf{L.C.M}$ of $(b,c)$ is $ = 72 = 2^3 \times 3^2$

Similarly $\bf{L.C.M}$ of $(c,a)$ is $ = 432 = 2^4 \times 3^3$

Now Let we assume that $a = 2^l\cdot 3^m$

and Similarly $b = 2^p\cdot 3^q$

and Similarly $c = 2^x\cdot 3^y$,

Now How can i solve after that

Help Required.

Thanks.
 
Mathematics news on Phys.org
jacks said:
If $\bf{L.C.M}$ of $(a,b)$ is $432,$ and $\bf{L.C.M}$ of $(b,c)$ is $72,$ and $\bf{L.C.M}$ of $(c,a)$ is $432.$

Then the number of ordered pairs $(a,b,c)$ is

My Trail Solution:: First we will factorise in prime factor form.

$\bf{L.C.M}$ of $(a,b)$ is $ = 432 = 2^4 \times 3^3$

Similarly $\bf{L.C.M}$ of $(b,c)$ is $ = 72 = 2^3 \times 3^2$

Similarly $\bf{L.C.M}$ of $(c,a)$ is $ = 432 = 2^4 \times 3^3$

Now Let we assume that $a = 2^l\cdot 3^m$

and Similarly $b = 2^p\cdot 3^q$

and Similarly $c = 2^x\cdot 3^y$,

Now How can i solve after that

Help Required.

Thanks.
This has more than one solution and we can approach as

First find power of 2

Higest from LCM of (b,c) = 3 so so b cannot have power > 3 and c cannot power > 3

So power or 2 in a = 4

Now in b and c can be (3,0), (3,1), (3,2), (3.3), (0,3),(1,3),(2,3) as these combinations given power 3

Similarly you can find the power of 3

In a = 3 an in bc = (2,0),(2,1)(2,2),(1,2),(0,2)

So a = 432 and for bc there are 35 sets

for example one is (2^3*3^2,1)
 
jacks said:
If $\bf{L.C.M}$ of $(a,b)$ is $432,$ and $\bf{L.C.M}$ of $(b,c)$ is $72,$ and $\bf{L.C.M}$ of $(c,a)$ is $432.$

Then the number of ordered pairs $(a,b,c)$ is

My Trail Solution:: First we will factorise in prime factor form.

$\bf{L.C.M}$ of $(a,b)$ is $ = 432 = 2^4 \times 3^3$

Similarly $\bf{L.C.M}$ of $(b,c)$ is $ = 72 = 2^3 \times 3^2$

Similarly $\bf{L.C.M}$ of $(c,a)$ is $ = 432 = 2^4 \times 3^3$

Now Let we assume that $a = 2^l\cdot 3^m$

and Similarly $b = 2^p\cdot 3^q$

and Similarly $c = 2^x\cdot 3^y$,

Now How can i solve after that

Help Required.

Thanks.

Enumerate.
Smartly.

What are the possible combinations of powers of 2 and 3 in b respectively c due to $\text{LCM}(b,c)=2^3 \times 3^2$?
In each case, what are the possible powers of 2 and 3 in a?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K