qraal said:
Problem with that Drakkith is that you fall back to Earth and cancel any motion you caused. Only escaping mass will produce a motion permanently. The mass has to escape really rapidly to produce a significant addition to Earth's momentum. If we wanted to drop Earth into the Sun, then the total velocity change is 30 km/s. If we use a photon drive to do that, exhaust velocity 300,000 km/s, then the mass converted to photons has to mass (30/3E+5) Earth's mass, or 1/10,000th, or about 1/100th the Moon's mass. A lot.
Back to the original question, the amount of force required depends on how long one plans to take accelerating or decelerating. Earth masses ~6E+24 kg and there's roughly ~3E+7 seconds in a year. Braking by 30 km/s over 1 year requires deceleration at 3E+4/3E+7 = 0.001 m/s
2 which is a force of...
F = m.a = 6E+24 kg * 0.001 m/s
2 = 6E+21 N
...which is an immense amount of force. Earth is about 1.3E+14 m
2 in cross-sectional area, so spreading out the force means an average of ~46 GPa pressure applied over the
whole surface pointing in that direction. Just a bit high at ~460,000 bars.
To avoid the need to apply such forces directly one can use a so-called "Gravity Tractor", in which a smaller mass is pushed directly and its gravitational attraction of the Earth pulls the Earth along with it. Using the Moon, for example. But the force applied needs to be less than the force that would cause the tractor object to break up.
Of course the usual reason for moving Earth is the need to avoid the Sun's rising luminosity. The Sun has 5.5 billion years left on the Main Sequence and will rise to ~2 times its present output by the end of that phase. This means Earth needs to recede to a distance of sqrt(2) ~1.4 AU from the Sun. To do that requires an impulse amounting to a speed change of ~16 km/s. Spread over 5.5 billion years that's an average acceleration of ~1E-13 m/s
2 and thus a force of ~5.8E+11 N, which averaged over the whole cross-section of the Earth is ~0.0044 Pa. Much better.
For such a "low" pressure we could use sunlight, which exerts a force of ~1E-5 N per square metre of perfect reflector at the Earth-Sun distance. Thus Earth would need to be towed by a solar-sail that's about ~500 times bigger in area. Alternatively a matter conversion drive annihilating ~2,000 kg/s would supply sufficient force, though finding a suitable place for it could be tricky.