Impaler said:
Orion, does your heavy Baryon mass fraction include the content still inside of stars?
Affirmative, the stellar heavy baryonic matter mass fraction inside stars is included and determined by the emission spectrum and metallicity of stars. It may be more meaningful to simply calculate the lifetime of the Universe, which includes the totality of all the different events occurring inside the Universe up to the present time and beyond.
H_0 = 2.3298 \cdot 10^{- 18} \; \text{s}^{- 1} - Hubble parameter (WMAP)
\Omega_h = 0.0003 - λCDM heavy baryonic matter mass fraction
\Omega_b = 0.0456 - λCDM baryonic matter mass fraction
Universe heavy baryonic matter stellar burn rate integration by substitution:
R_b = \frac{d \Omega}{dt} = \Omega_h H_0 = 6.989 \cdot 10^{-22} \; \frac{d \Omega}{\text{s}}
Universe heavy baryonic matter stellar burn rate:
\boxed{R_b = 6.989 \cdot 10^{-22} \; \frac{d \Omega}{\text{s}}}
Universe baryonic matter stellar epoch burn lifetime integration by substitution:
T_s = d \Omega \cdot dt = \frac{\Omega_b}{R_b} = \frac{\Omega_b}{\Omega_h H_0} = 6.524 \cdot 10^{19} \; \text{s} = 2.067 \cdot 10^{12} \; \text{y}
Universe baryonic matter stellar epoch burn lifetime:
\boxed{T_s = \frac{\Omega_b}{\Omega_h H_0}}
Universe baryonic matter stellar epoch burn lifetime:
\boxed{T_s = 2.067 \cdot 10^{12} \; \text{y}}
Universe age:
T_u = \frac{1}{H_0} = 4.292 \cdot 10^{17} \; \text{s} = 1.36 \cdot 10^{10} \; \text{y}
\boxed{T_u = 1.36 \cdot 10^{10} \; \text{y}}
Number of present Universe ages required to complete baryonic matter stellar epoch burn lifetime:
n_a = \frac{T_s}{T_u} = \frac{\Omega_b}{\Omega_h} = 152
The Universe will be producing stars for a very long time...
[/Color]
Reference:
Universe - Wikipedia
Cosmological Composition - Pie_Chart - Wikipedia
λCDM model parameters - Wikipedia
Heat death of the Universe - Wikipedia