How Planck explained black body radiation

AI Thread Summary
Planck explained black body radiation by proposing that light energy is emitted in quantized amounts, specifically in integer multiples of a constant times the frequency of light. This approach addressed the ultraviolet catastrophe, where classical theories predicted infinite energy density at short wavelengths. By interpolating between the Rayleigh-Jeans and Wien distributions, Planck developed a new theoretical framework that required energy quantization, which was crucial for deriving the correct black-body radiation spectrum. His method also involved a new way of counting energy states, aligning with Bose-Einstein statistics rather than Maxwell-Boltzmann. Ultimately, Planck's work laid the foundation for quantum theory and resolved inconsistencies in classical physics.
cnidocyte
Messages
34
Reaction score
0
If I'm not mistaken he explained it with the theory that light energy can be released only in integer multiples of a constant times the frequency of the light. How did he come to this conclusion? Was it to do with the fact that the higher the temperature, the higher the frequencies of the light emitted?
 
Science news on Phys.org
Planck's idea was to get around what was called the ultraviolet catastrophe. The point was that without quantization, the blackbody spectrum would become infinite as wavelength -> 0.
 
cnidocyte said:
If I'm not mistaken he explained it with the theory that light energy can be released only in integer multiples of a constant times the frequency of the light. How did he come to this conclusion? Was it to do with the fact that the higher the temperature, the higher the frequencies of the light emitted?

the assumption of quantized amounts of photon energy is used to produce the black-body radiation spectrum. This result is the justification of that assumption.
 
At the time, the limiting cases of the power spectrum were known via both experiment and theory. The Rayleigh-Jeans fit lower frequency radiance while the Wien fit the higher frequency (though Wien seemed to derive his equations more from empirical fitting than strong theoretical footing). The Rayleigh-Jeans distribution can be found using classical electrodynamics and classical statistical mechanics. However, as mathman stated, you end up with the ultraviolet catastrophe where the energy density suffers from an ultraviolet divergence. It was theorized at the time, by Rayleigh and others, that the fault laid in the classical equipartition theory.

Planck looked at the Wien and Rayleigh-Jeans results and proposed an interpolation between the two results. This was the same as the resulting Placnk distribution. It then took him several weeks to find a physical and theoretical reasoning behind this and this was done by throwing out the classical equipartition theory and devising a new one that required the energy to be quantized. Actually, quantization of energy was done by Boltzmann as a tool for derivations but with Boltzmann the quantization did not affect the final results. However, removing the quantization in Planck's derivation simply results in the Rayleigh-Jeans distribution again. Thus, Planck's use of quantization was essential. In addition to the quantization, Planck used a different method for counting the elements which is consistent with what is now called Bose-Einstein statistics (as opposed to the Maxwell-Boltzmann statistics that gave rise to the Rayleigh-Jeans).

So basically Planck found a way to fit an equation that matched the Wien and Rayleigh-Jeans distributions and was able to a posteriori derive this distribution by using a new equipartition theorem. This matched the suspicions of other physicists at the time that the classical statistical equipartition theory may be the problem.

Milonni has a few sections in his Quantum Vacuum book that discusses this in detail.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top