- #1

wolram

Gold Member

- 4,267

- 557

## Main Question or Discussion Point

I noticed this in the arxivs, i thought the LCDM model was irifutable but it seems some are trying to better it.

arXiv:1602.02103 [pdf, ps, other]

First evidence of running cosmic vacuum: challenging the concordance model

Joan Sola, Adria Gomez-Valent, Javier de Cruz Perez

Comments: LaTeX, 6 pages, 2 tables and 3 figures

Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th)

Despite the fact that a rigid $\Lambda$-term is a fundamental building block of the concordance $\Lambda$CDM model, we show that a large class of cosmological scenarios with dynamical vacuum energy density $\rho_{\Lambda}$ and/or gravitational coupling $G$, together with a possible non-conservation of matter, are capable of seriously challenging the traditional phenomenological success of the $\Lambda$CDM. In this Letter, we discuss these "running vacuum models" (RVM's), in which $\rho_{\Lambda}=\rho_{\Lambda}(H)$ consists of a nonvanishing constant term and a series of powers of the Hubble rate. Such generic structure is potentially linked to the quantum field theoretical description of the expanding Universe. By performing an overall fit to the cosmological observables $SNIa+BAO+H(z)+LSS+BBN+CMB$ (in which the WMAP9, Planck 2013 and Planck 2015 data are taken into account), we find that the RVM's appear definitely more favored than the $\Lambda$CDM, namely at an unprecedented level of $\sim 4\sigma$, implying that the $\Lambda$CDM is excluded at $\sim 99.99\%$ c.l. Furthermore, the Akaike and Bayesian information criteria confirm that the dynamical RVM's are strongly preferred as compared to the conventional rigid $\Lambda$-picture of the cosmic evolution.

arXiv:1602.02103 [pdf, ps, other]

First evidence of running cosmic vacuum: challenging the concordance model

Joan Sola, Adria Gomez-Valent, Javier de Cruz Perez

Comments: LaTeX, 6 pages, 2 tables and 3 figures

Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th)

Despite the fact that a rigid $\Lambda$-term is a fundamental building block of the concordance $\Lambda$CDM model, we show that a large class of cosmological scenarios with dynamical vacuum energy density $\rho_{\Lambda}$ and/or gravitational coupling $G$, together with a possible non-conservation of matter, are capable of seriously challenging the traditional phenomenological success of the $\Lambda$CDM. In this Letter, we discuss these "running vacuum models" (RVM's), in which $\rho_{\Lambda}=\rho_{\Lambda}(H)$ consists of a nonvanishing constant term and a series of powers of the Hubble rate. Such generic structure is potentially linked to the quantum field theoretical description of the expanding Universe. By performing an overall fit to the cosmological observables $SNIa+BAO+H(z)+LSS+BBN+CMB$ (in which the WMAP9, Planck 2013 and Planck 2015 data are taken into account), we find that the RVM's appear definitely more favored than the $\Lambda$CDM, namely at an unprecedented level of $\sim 4\sigma$, implying that the $\Lambda$CDM is excluded at $\sim 99.99\%$ c.l. Furthermore, the Akaike and Bayesian information criteria confirm that the dynamical RVM's are strongly preferred as compared to the conventional rigid $\Lambda$-picture of the cosmic evolution.