How should I calculate the stationary value of ## S[y] ##?

Math100
Messages
813
Reaction score
229
Homework Statement
Use the method of Lagrange multipliers to find the function ## y(x) ## that makes the functional ## S[y]=\int_{1}^{2}x^2y^2dx ## stationary subject to the two constraints ## \int_{1}^{2}xydx=1 ## and ## \int_{1}^{2}x^2ydx=2 ##. Calculate the stationary value of ## S[y] ##.
Relevant Equations
None.
Consider the functional ## S[y]=\int_{1}^{2}x^2y^2dx ## stationary subject to the two constraints ## \int_{1}^{2}xydx=1 ## and ## \int_{1}^{2}x^2ydx=2 ##.
Then the auxiliary functional is ## \overline{S}[y]=\int_{1}^{2}(x^2y^2+\lambda_{1}xy+\lambda_{2}x^2y)dx, y(1)=y(2)=0 ## where ## \lambda_{1} ## and ## \lambda_{2} ## are the Lagrange multipliers.
By definition, the Euler-Lagrange equation is ## \frac{d}{dx}(\frac{\partial F}{\partial y'})-\frac{\partial F}{\partial y}=0, y(a)=A, y(b)=B ## for the functional ## S[y]=\int_{a}^{b}F(x, y, y')dx, y(a)=A, y(b)=B ##.
Let ## F(x, y, y')=x^2y^2+\lambda_{1}xy+\lambda_{2}x^2y ##.
This gives ## \frac{\partial F}{\partial y}=2x^2y+\lambda_{1}x+\lambda_{2}x^2 ##.
Thus, the Euler-Lagrange equation is ## 2x^2y+\lambda_{1}x+\lambda_{2}x^2=0\implies 2x^2y=-\lambda_{1}x-\lambda_{2}x^2\implies y=-\frac{\lambda_{1}}{2x}-\frac{\lambda_{2}}{2} ##.
The first constraint ## \int_{1}^{2}xydx=1 ## gives ## 1=\int_{1}^{2}x[-\frac{\lambda_{1}}{2x}-\frac{\lambda_{2}}{2}]dx\implies 1=-\frac{\lambda_{1}}{2}-\frac{3\lambda_{2}}{4} ## and the second constraint ## \int_{1}^{2}x^2ydx=2 ## gives ## 2=\int_{1}^{2}x^2[-\frac{\lambda_{1}}{2x}-\frac{\lambda_{2}}{2}]dx\implies 2=-\frac{3\lambda_{1}}{4}-\frac{7\lambda_{2}}{6} ##, so ## \lambda_{1}=16 ## and ## \lambda_{2}=-12 ##.
Hence ## y(x)=-\frac{\lambda_{1}}{2x}-\frac{\lambda_{2}}{2}\implies y(x)=-\frac{8}{x}+6 ##.
Observe that ## S[y]=\int_{1}^{2}x^2y^2dx\implies S[y]=\int_{1}^{2}x^2(-\frac{8}{x}+6)^2dx\implies S[y]=\int_{1}^{2}x^2(\frac{64}{x^2}-\frac{96}{x}+36)dx\implies S[y]=4 ##.
Therefore, the function ## y(x) ## that makes the functional ## S[y]=\int_{1}^{2}x^2y^2dx ## stationary subject to the two constraints ## \int_{1}^{2}xydx=1 ## and ## \int_{1}^{2}x^2ydx=2 ## is ## y(x)=-\frac{8}{x}+6 ## and the stationary value of ## S[y] ## is ## 4 ##.

I just want to know if the work and answer shown above is correct or not. Please check/verify/confirm to see if this is correct or not.
 
Last edited:
Physics news on Phys.org
This is the correct method; I hve not checked your arithmetic.

Note that y' does not appear in F, so you do not end up with an ODE and you do not have boundary conditions.
 
pasmith said:
This is the correct method; I hve not checked your arithmetic.

Note that y' does not appear in F, so you do not end up with an ODE and you do not have boundary conditions.
Thank you so much for confirming/verifying!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top