How to calculate gating time from the rate of the random coincidence?

physicsclaus
Messages
20
Reaction score
5
Homework Statement
Calculate gating time from the rate of the random coincidences.
Relevant Equations
I sincerely do not know what equation I should, that's why I want to have solution in this thread.
Hello everyone,

I am now doing experiment related to quantum erasure. After plotting the correlation measurement with and without blocking one of the polarization from the SPDC source (say, V polarization), I do not know how to work further on the gating time from the rate of the random coincidence, and even I do not know why I need to do required by the lab report. I hope some of the talents here can provide me with some insights to complete this part.

Please find the attached .csv file.

Channel 2 and channel 4 are the probe and the system. Photons pass through them, and when two photons come from each port and meet together then we will have coincidence rate.

Please comment and let me know if there is anything I need to clarify more.

Thanks a lot!

 

Attachments

Physics news on Phys.org


Calculating gating time from the rate of random coincidence involves understanding the concept of coincidence window and its relation to the rate of random coincidence. The coincidence window is the time interval during which the detection of two photons is considered a coincidence.

To calculate the gating time, you can use the formula: Gating time = 1/ (Rate of random coincidence * Coincidence window). The rate of random coincidence can be obtained by measuring the coincidence rate when the two channels are not correlated, i.e. when the polarization is not blocked.

In your experiment, channel 2 and channel 4 are the probe and the system, respectively. To obtain the rate of random coincidence, you can measure the coincidence rate when the polarization is not blocked in channel 2 and channel 4. This will give you the rate of random coincidence for your setup.

Once you have the rate of random coincidence, you can use the above formula to calculate the gating time. This gating time is important as it determines the time window in which you can detect correlated photons and measure their polarization.

I hope this helps in understanding how to calculate the gating time from the rate of random coincidence in your experiment. If you have any further questions or need more clarification, please do not hesitate to ask. Good luck with your experiment!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top