How to calculate gating time from the rate of the random coincidence?

AI Thread Summary
Calculating gating time from the rate of random coincidence requires understanding the coincidence window, which is the time interval for detecting two photons as a coincidence. The formula for gating time is Gating time = 1 / (Rate of random coincidence * Coincidence window). To find the rate of random coincidence, measure the coincidence rate when the polarization is not blocked in both channels. This gating time is crucial for determining the detection window for correlated photons and their polarization measurements. Clarifications and further questions are welcomed to assist in the experiment.
physicsclaus
Messages
20
Reaction score
5
Homework Statement
Calculate gating time from the rate of the random coincidences.
Relevant Equations
I sincerely do not know what equation I should, that's why I want to have solution in this thread.
Hello everyone,

I am now doing experiment related to quantum erasure. After plotting the correlation measurement with and without blocking one of the polarization from the SPDC source (say, V polarization), I do not know how to work further on the gating time from the rate of the random coincidence, and even I do not know why I need to do required by the lab report. I hope some of the talents here can provide me with some insights to complete this part.

Please find the attached .csv file.

Channel 2 and channel 4 are the probe and the system. Photons pass through them, and when two photons come from each port and meet together then we will have coincidence rate.

Please comment and let me know if there is anything I need to clarify more.

Thanks a lot!

 

Attachments

Physics news on Phys.org


Calculating gating time from the rate of random coincidence involves understanding the concept of coincidence window and its relation to the rate of random coincidence. The coincidence window is the time interval during which the detection of two photons is considered a coincidence.

To calculate the gating time, you can use the formula: Gating time = 1/ (Rate of random coincidence * Coincidence window). The rate of random coincidence can be obtained by measuring the coincidence rate when the two channels are not correlated, i.e. when the polarization is not blocked.

In your experiment, channel 2 and channel 4 are the probe and the system, respectively. To obtain the rate of random coincidence, you can measure the coincidence rate when the polarization is not blocked in channel 2 and channel 4. This will give you the rate of random coincidence for your setup.

Once you have the rate of random coincidence, you can use the above formula to calculate the gating time. This gating time is important as it determines the time window in which you can detect correlated photons and measure their polarization.

I hope this helps in understanding how to calculate the gating time from the rate of random coincidence in your experiment. If you have any further questions or need more clarification, please do not hesitate to ask. Good luck with your experiment!
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Thread 'Stacked blocks & pulley system'
I've posted my attempt at a solution but I haven't gone through the whole process of putting together equations 1 -4 yet as I wanted to clarify if I'm on the right path My doubt lies in the formulation of equation 4 - the force equation for the stacked block. Since we don't know the acceleration of the masses and we don't know if mass M is heavy enough to cause m2 to slide, do we leave F_{12x} undetermined and not equate this to \mu_{s} F_{N} ? Are all the equations considering all...
Back
Top