How to calculate the carrier concentration

AI Thread Summary
To calculate the donor concentration (Nd) for the first question, the Fermi level (Ef) was used in conjunction with intrinsic carrier concentration (ni) and temperature (T) to find the electron concentration (n(o)), resulting in Nd = 6.5 x 10^15 per cm³ after accounting for the boron atoms. For the second question, the unionized indium atoms were determined using Fermi-Dirac statistics, yielding a probability of occupancy for holes at the acceptor level, which resulted in approximately 2.05 x 10^14 unionized indium atoms. The discussion also raised questions about the impact of shallow donor impurities on the calculations. Overall, the calculations relied on established semiconductor equations and statistical methods to derive the required concentrations. Further clarification on the role of shallow donors in the second question was sought.
myousuf
Messages
4
Reaction score
0
Can any please help me in solving the following two questions

Q1
A Si sample is doped with 10^16 per cm cube boron atoms and a certain
number of shallow donors. The fermi level (Ef) is 0.36 eV above Ei
(intrinsic energy level) at 300K. What is the donor concentration Nd?

For Si at 300K ni(intrinsic carrier concentration) = 1.5 x 10^10 per
cm cube




Q2
A Si sample contains 10^16 per cm cube In(indium) acceptor atoms and
a certain number of shallow donors. The In (indium) acceptor level is
0.16 eV above Ev(Valence band edge), and Ef is 0.26eV above Ev at
300K. How many in atoms in cm per cube are unionized (i.e. neutral)?

For Si at 300K ni(intrinsic carrier concentration) = 1.5 x 10^10 per
cm cube




There is no additional information available. Please state the
question number when answering and indicate any formulas used.

The following equations may prove useful

n(o) x p(o) = ni^2

n(o) = ni x e((Ef-Ei))/KT)

p(o) = ni x e((Ei-Ef)/KT)
 
Last edited:
Physics news on Phys.org
What have you done so far? If you want help, than you should say what you think and what you have tried.

Is there any more relations that you know of? How about "carge neutralisty condition of doped semi conductor" ? And Law of mass action?
 
This is what I have came up with so far for question number 1

using the relation n(o) = ni x e((Ef-Ei))/KT)

with Ef-Ei=0.36 x 1.6 x 10^-19 , ni=1.5 x 10^10, T=300k , K=1.38 x 10^-23

we get n(o) = 1.654 x 10^16 per cm cube

However there are 10^16 B atoms to neutralize these charges

Hence Nd = 1.654 x 10^16 - 10^16 = 6.5 x 10^15 per cm cube
 
For question number 2

unionized atoms are left at the acceptor level

Ef-Ev=0.26eV

Ea-Ev=0.16eV

Ea-Ef=0.16-0.26= -0.10eV

Using fermi-driac statistics f(E)=1/(1+e((E-Ef)/KT)))

for E=Ea,T=300 and substituting all the constants

f(E)=1/(1+e((Ea-Ef)/KT))), gives = 0.9794

However fermi driac statistics give the probablity of occupance of an electron in an Energy state E. hence 0.9794 is the probablity of occupance of an electron.

hole probablity of occupance=1-electron probablity of occupancy

hole probablity of occupance of the energy state Ea = 1-0.9794 = 0.02053

unionized atoms are left at the acceptor level(Ea)

Hence, number of IN(indium) atoms left unionized = hole probabilty of occupancy of Energy state Ea x number of In acceptor atoms

=0.02053 x 10^16

=2.05 x 10^14
 
Anyway there are still questions that remain unanswered

For instance, what role does shallow donor impurities have to play in question number 2.

Any suggestions to the proposed solution above will be highly appreciated
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top