How to Compute charge ##Q## of a particular state in free Dirac field

  • Thread starter Thread starter Pouramat
  • Start date Start date
  • Tags Tags
    Charge
Pouramat
Messages
27
Reaction score
1
Homework Statement
For a free Dirac field, how can I explicitly compute the charge ##Q## of the state ##a_{p1}^{r \dagger}a_{p2}^{s \dagger} b_{p3}^{t \dagger}|0>##.
Relevant Equations
The operator $Q$ is :
\begin{equation}
Q = \int \frac{d^3 p}{(2 \pi)^3} \Sigma_s \bigg(a_p^{s \dagger}a_p^s-b_p^ {s \dagger} b_p^s \bigg)
\end{equation}
suppose I should evaluate $$Qa_{p1}^{r \dagger}a_{p2}^{s \dagger} b_{p3}^{t \dagger}$$ I get lost in the commutator relation. Any help?
 
Last edited by a moderator:
Physics news on Phys.org
Hint: You need, of course anti-commutator relations, because the Dirac field must be quantized as fermions. The goal is to bring annihilation operators to the right, so that it's acting on the vacuum state, giving 0. Note that for arbitrary operators
$$[\hat{A},\hat{B} \hat{C}]=\{\hat{A},\hat{B} \} \hat{C}-\hat{B} \{\hat{A},\hat{C} \}.$$
Further you have
$$\{\hat{a}_p^{s},\hat{a}_{p'}^{s' \dagger} \}=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}$$
and similar for the b's. All other anticommutators vanish.

It's also intuitively clear, what the charge of this state is, since obviously any a-particle carries a charge of +1 and any b-particle (the anti-particle of the a-particle) carries charge -1. But it's a good exercise to verify this by the explicit calculation.
 
  • Like
Likes Delta Prime
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top