How to Compute Inverse Fourier Transform for a Specific Function

mathy_girl
Messages
22
Reaction score
0
Hi all,

I'm having a bit trouble computing the Inverse Fourier Transform of the following:

\frac{\alpha}{2\pi}\exp\left(\frac{1}{2} \alpha^2 C^2(K) \tau \omega^2\right)

Here, C^2(K), \alpha and \tau can be assumed to be constant. Hence, we have an integral with respect to \omega.

Who can help me out?
 
Mathematics news on Phys.org
So you want to find the inverse Fourier transform of
\frac{\alpha}{2\pi}\exp(A \omega^2)?

It should be:

\frac{\alpha}{2\pi}\frac{1}{\sqrt{-2 A}}\exp\left(\frac{t^2}{4A}\right)
 
jpreed said:
So you want to find the inverse Fourier transform of
\frac{\alpha}{2\pi}\exp(A \omega^2)?

It should be:

\frac{\alpha}{2\pi}\frac{1}{\sqrt{-2 A}}\exp\left(\frac{t^2}{4A}\right)

A < 0 is necessary.
 
One can do a suitable variable transform to get the integral in the form


∫e-x2 dx
with limits -∞ to +∞


which can be looked up in a standard table of integrals. I suspect the answer is what jpreed gave in post #2.
 
Whoops.. I just figured that there are two small mistakes in my first post, I would like to have the Inverse Fourier Transform of:
\frac{\alpha^2}{2\pi}\exp\left(-\frac{1}{2} \alpha^2 C^2(K) \tau \omega^2\right)

Here, note that \alpha is squared, and a minus sign is added in the argument of exp.

Don't know if that makes a lot of difference?
 
Not really. Just replace A with -A in all the responses.

mathman said:
A < 0 is necessary.

That would become

-A < 0​
or in other words
A > 0​
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top