genxium
- 137
- 2
I'm learning time-dependent Maxwell's Equations and having difficulty understanding the following derivative:
Given f(\textbf{r}, \textbf{r}', t) = \frac{[\rho(\textbf{r}, t)]}{|\textbf{r} - \textbf{r}'|}
where
\textbf{r} = x \cdot \textbf{i} + y \cdot \textbf{j} + z \cdot \textbf{k}, in Cartesian Coordinates
\textbf{r}' = x' \cdot \textbf{i} + y' \cdot \textbf{j} + z' \cdot \textbf{k}
[\rho(\textbf{r}, t)] \stackrel{\Delta}{=} \rho(\textbf{r}, t_r) with t_r = t-\frac{|\textbf{r} - \textbf{r}'|}{c} and c is a non-zero constant(speed of EM wave indeed)
The tutorial I'm reading "infers" that
\nabla f(\textbf{r}, \textbf{r}', t) = \nabla \frac{1}{|\textbf{r} - \textbf{r}'|} \cdot [\rho(\textbf{r}, t)] + \frac{1}{|\textbf{r} - \textbf{r}'|} \cdot [\frac{\partial \rho(\textbf{r}, t)}{\partial t}] \cdot \nabla t_r -- (a)
where \nabla \stackrel{\Delta}{=} \frac{\partial}{\partial x} \cdot \textbf{i} + \frac{\partial}{\partial y} \cdot \textbf{j} + \frac{\partial}{\partial z} \cdot \textbf{k}
I'm confused by the latter part of the equation above. By applying the identity \nabla (g_1 \cdot g_2) = g_2 \cdot \nabla g_1 + g_1 \cdot \nabla g_2 to f(\textbf{r}, \textbf{r}', t) I get
\nabla f(\textbf{r}, \textbf{r}', t) = \nabla \frac{1}{|\textbf{r} - \textbf{r}'|} \cdot [\rho(\textbf{r}, t)] + \frac{1}{|\textbf{r} - \textbf{r}'|} \cdot \nabla [\rho(\textbf{r}, t)] -- (b)
then if (a) is correct I'll have
\nabla [\rho(\textbf{r}, t)] = [\frac{\partial \rho(\textbf{r}, t)}{\partial t}] \cdot \nabla t_r -- (c)
However, though trivial, \textbf{r}(x, y, z) = x \cdot \textbf{i} + y \cdot \textbf{j} + z \cdot \textbf{k} is still a function of x, y \, \text{and} \, z, so in my calculation
\nabla [\rho(\textbf{r}, t)] = \frac{\partial \rho(\textbf{r}, t_r)}{\partial \textbf{r}} \cdot \nabla \textbf{r} + \frac{\partial \rho(\textbf{r}, t_r)}{\partial t_r} \cdot \nabla t_r = \frac{\partial \rho(\textbf{r}, t_r)}{\partial \textbf{r}} \cdot \nabla \textbf{r} + [\frac{\partial \rho(\textbf{r}, t)}{\partial t}] \cdot \nabla t_r -- (d)
Obviously (d) contradicts (c) but unfortunately I can't figure out where I went wrong in my calculation.
Can someone help to point out my mistakes or guide me to some references? Any help is appreciated :)
Given f(\textbf{r}, \textbf{r}', t) = \frac{[\rho(\textbf{r}, t)]}{|\textbf{r} - \textbf{r}'|}
where
\textbf{r} = x \cdot \textbf{i} + y \cdot \textbf{j} + z \cdot \textbf{k}, in Cartesian Coordinates
\textbf{r}' = x' \cdot \textbf{i} + y' \cdot \textbf{j} + z' \cdot \textbf{k}
[\rho(\textbf{r}, t)] \stackrel{\Delta}{=} \rho(\textbf{r}, t_r) with t_r = t-\frac{|\textbf{r} - \textbf{r}'|}{c} and c is a non-zero constant(speed of EM wave indeed)
The tutorial I'm reading "infers" that
\nabla f(\textbf{r}, \textbf{r}', t) = \nabla \frac{1}{|\textbf{r} - \textbf{r}'|} \cdot [\rho(\textbf{r}, t)] + \frac{1}{|\textbf{r} - \textbf{r}'|} \cdot [\frac{\partial \rho(\textbf{r}, t)}{\partial t}] \cdot \nabla t_r -- (a)
where \nabla \stackrel{\Delta}{=} \frac{\partial}{\partial x} \cdot \textbf{i} + \frac{\partial}{\partial y} \cdot \textbf{j} + \frac{\partial}{\partial z} \cdot \textbf{k}
I'm confused by the latter part of the equation above. By applying the identity \nabla (g_1 \cdot g_2) = g_2 \cdot \nabla g_1 + g_1 \cdot \nabla g_2 to f(\textbf{r}, \textbf{r}', t) I get
\nabla f(\textbf{r}, \textbf{r}', t) = \nabla \frac{1}{|\textbf{r} - \textbf{r}'|} \cdot [\rho(\textbf{r}, t)] + \frac{1}{|\textbf{r} - \textbf{r}'|} \cdot \nabla [\rho(\textbf{r}, t)] -- (b)
then if (a) is correct I'll have
\nabla [\rho(\textbf{r}, t)] = [\frac{\partial \rho(\textbf{r}, t)}{\partial t}] \cdot \nabla t_r -- (c)
However, though trivial, \textbf{r}(x, y, z) = x \cdot \textbf{i} + y \cdot \textbf{j} + z \cdot \textbf{k} is still a function of x, y \, \text{and} \, z, so in my calculation
\nabla [\rho(\textbf{r}, t)] = \frac{\partial \rho(\textbf{r}, t_r)}{\partial \textbf{r}} \cdot \nabla \textbf{r} + \frac{\partial \rho(\textbf{r}, t_r)}{\partial t_r} \cdot \nabla t_r = \frac{\partial \rho(\textbf{r}, t_r)}{\partial \textbf{r}} \cdot \nabla \textbf{r} + [\frac{\partial \rho(\textbf{r}, t)}{\partial t}] \cdot \nabla t_r -- (d)
Obviously (d) contradicts (c) but unfortunately I can't figure out where I went wrong in my calculation.
Can someone help to point out my mistakes or guide me to some references? Any help is appreciated :)