How to covert this differential equation into a system of one order ODE?

nufeng
Messages
6
Reaction score
0
How to covert this differential equation into a system of one order ODE?
x^2*y''-2*x*y'+2*y = 0;
y(1) = 4; y'(1)=0;
solve for y(x)

I tried to convert it
get

X' = AX
in which
X = [y, z]'
A = [0, 1; 2/x^2, 2/x];

But x exists in A, which cannot solve by dsolve in Matlab.
 
Physics news on Phys.org
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top