How to create a mathematical model of investment?

  • Thread starter Thread starter Eclair_de_XII
  • Start date Start date
  • Tags Tags
    Mathematical Model
Eclair_de_XII
Messages
1,082
Reaction score
91

Homework Statement


"Someone with no initial capital ##S_0=0## invests ##k \frac{dollar}{year}## at an annual rate of return ##r##. Assume that investments are made continuously and that the return is compounded continuously."

Find the solution ##S## that solves the differential equation modeling this scenario.

Homework Equations


Let ##S## be the amount of capital at any time.

The Attempt at a Solution


I'm trying to make sure that the units of all my quantities are the same, but the main problem I'm having is the discontinuity at ##t=0## when I divide ##S## by ##t##.

##\frac{dS}{dt}=\frac{S}{t}+k(r+1)##
##\frac{dS}{dt}-\frac{S}{t}=k(r+1)##
##\frac{d}{dt}(t^{-1}S)=\frac{k(r+1)}{t}##
##S(t)=(tlnt)(k(r+1))##

I frankly do not know how to model this problem. Can anyone help me understand what is happening in this problem? It's hard to insert ##S## into the equation because the ##\frac{dS}{dt}## does not rely on ##S##; it relies on the rate of return ##r## which only applies to the yearly investments ##k##. Then it's compounded continually...? I do not understand this.
 
Physics news on Phys.org
Eclair_de_XII said:

Homework Statement


"Someone with no initial capital ##S_0=0## invests ##k \frac{dollar}{year}## at an annual rate of return ##r##. Assume that investments are made continuously and that the return is compounded continuously."

Find the solution ##S## that solves the differential equation modeling this scenario.

Homework Equations


Let ##S## be the amount of capital at any time.

The Attempt at a Solution


I'm trying to make sure that the units of all my quantities are the same, but the main problem I'm having is the discontinuity at ##t=0## when I divide ##S## by ##t##.

##\frac{dS}{dt}=\frac{S}{t}+k(r+1)##
##\frac{dS}{dt}-\frac{S}{t}=k(r+1)##
##\frac{d}{dt}(t^{-1}S)=\frac{k(r+1)}{t}##
##S(t)=(tlnt)(k(r+1))##

I frankly do not know how to model this problem. Can anyone help me understand what is happening in this problem? It's hard to insert ##S## into the equation because the ##\frac{dS}{dt}## does not rely on ##S##; it relies on the rate of return ##r## which only applies to the yearly investments ##k##. Then it's compounded continually...? I do not understand this.

For a very small time increment of ##\Delta t## years, the amount invested between times ##t## and ##t + \Delta t## is ##k \Delta t ## dollars; that is what is meant by a continuous investment at rate ##k##.

If S(t) is the amount in the bank at time ##t## (years) we have
$$S(t+\Delta t) = S(t) (1 + r \Delta t) + k \Delta t \hspace{2cm}(1)$$
because the balance ##\$S(t)## at ##t## would grow by the interest-rate factor factor ##1 + r \Delta t## in the short time interval of length ##\Delta t##, even if we did not invest any more---but additional investment makes it grow more. That is what continuous compounding means: a dollar in the account at time zero grows to ##\$e^{rt}## by time ##t > 0##, and so the growth in value from ##t## to ##t + \Delta t## is
$$e^{r(t +\Delta t)} - e^{rt} = e^{rt} \left( e^{r \Delta t}-1 \right) \doteq e^{rt} (1 + \Delta t),$$
which is a growth rate of ##1 + r \Delta t.##

We get the differential equation for ##S(t)## from eq.(1) above.

For more on continuous compounding, see, eg.,
http://www-stat.wharton.upenn.edu/~waterman/Teaching/IntroMath99/Class04/Notes/node11.htm
http://people.duke.edu/~charvey/Classes/ba350_1997/preassignment/proof1.htm
http://math.stackexchange.com/questions/539115/proof-of-continuous-compounding-formula
 
Last edited:
Thanks. Should I worry about the equation being continuous at ##t=0##? Yes, right? So I can't have any of the variables be divided by ##t## for the ##\frac{dollar}{year}## unit.
 
Can anyone tell me what is wrong with my current model?

##\frac{dS}{dt}=r(S+kt)=rS+rkt##
##\frac{dS}{dt}-rS=rkt##
##\frac{d}{dt}(Se^{-rt})=(rkt)(e^{-rt})##

Basically, I get an equation with an extra linear term: ##S(t)=-kt+\frac{k}{r}(e^{rt}-1)##. It's another equation that satisfies the IVP at ##S(0)=0##. I'm not sure what to make of that, but at least I got something done tonight.
 
Last edited:
Eclair_de_XII said:
Can anyone tell me what is wrong with my current model?

##\frac{dS}{dt}=r(S+kt)=rS+rkt##
##\frac{dS}{dt}-rS=rkt##
##\frac{d}{dt}(Se^{-rt})=(rkt)(e^{-rt})##

Basically, I get an equation with an extra linear term: ##S(t)=-kt+\frac{k}{r}(e^{rt}-1)##. It's another equation that satisfies the IVP at ##S(0)=0##. I'm not sure what to make of that, but at least I got something done tonight.

*************************************

The model above assumes that the person invests at rate ##kt## at time t, so is a variable investment rate that increases over time. The problem told you the investment rate is constant, not variable.

************************************

Eclair_de_XII said:
Thanks. Should I worry about the equation being continuous at ##t=0##? Yes, right? So I can't have any of the variables be divided by ##t## for the ##\frac{dollar}{year}## unit.

I have no idea what you are talking about. There is no issue of discontinuity anywhere, even at ##t = 0##. You do not divide by ##t##---that is not what rates are about. I explained exactly what was meant by rates, so all you need to do is re-read the post.
 
Last edited:
Oh, I got it: ##\frac{dS}{dt}=r(S+\frac{k}{r})##.

Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top